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Coarse-Grained Reconfigurable Architectures
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SUMMARY A novel configuration data compression technique for
coarse-grained reconfigurable architectures (CGRAs) is proposed. Reduc-
ing the size of configuration data of CGRAs shortens the reconfiguration
time especially when the communication bandwidth between a CGRA and
a host CPU is limited. In addition, it saves energy consumption of configu-
ration cache and controller. The proposed technique is based on a multicast
configuration technique called RoMultiC, which reduces the configuration
time by multicasting the same data to multiple PEs (Processing Elements)
with two bit-maps. Scheduling algorithms for an optimizing the order of
multicasting have been proposed. However, the multicasting is possible
only if each PE has completely the same configuration. In general, config-
uration data for CGRAs can be divided into some fields like machine code
formats of general perpose CPUs. The proposed scheme confines a part of
fields for multicasting so that the possibility of multicasting more PEs can
be increased. This paper analyzes algorithms to find a configuration pattern
which maximizes the number of multicasted PEs. We implemented the pro-
posed scheme to CMA (Cool Mega Array), a straight forward CGRA as a
case study. Experimental results show that the proposed method achieves
40.0% smaller configuration than a previous method for an image process-
ing application at maximum. The exploration of the multicasted grain size
reveals the effective grain size for each algorithm. Furthermore, since both
a dynamic power consumption of the configuration controller and a con-
figuration time are improved, it achieves 50.1% reduction of the energy
consumption for the configuration with a negligible area overhead.
key words: CGRA, configuration reduction, integer-linear-program, mul-
ticasting

1. Introduction

Coarse-grained reconfigurable architecture (CGRA) is a re-
markable platform for embedded systems including IoT de-
vices because of its high degree of energy efficiency and
programmability. CGRAs have an array of reconfigurable
processing elements (PEs) for efficient parallel execution of
compute-intensive application. Each PE operates accord-
ing to configuration data which specify behaviors of com-
ponents in the PE, and the size of configuration data for the
whole PE array is often quite large.

Considering that a CGRA is connected to a host CPU
with a general purpose interface bus like 32-bit width as an
accelerator, a critical issue is a long time to transfer the con-
figuration data from the CPU to the CGRA, in other words,
reconfiguration time. Most of CGRAs are supposed to be
used in task-by-task off loading for improving the perfor-
mance and energy efficiency. Since the energy efficiency of
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the CGRA is much better than that of the host processor, it
is advantageous to off-load tasks as possible. By shortoning
the configuration time, the oppotunity to off-load tasks is in-
creased, because small granularity tasks can be a candidate
of off-loading. Thus, various researches have be exerted to
reduce the configuration time of CGRAs [2], [6], [7].

Similar researches for FPGAs took an approach using
bit-level compression techniques such as LZSS, Huffman
coding, and run-length-encoding. However, these compres-
sors and decompressors are complex and sometimes require
a large buffer which consumes a large energy and semicon-
ductor area. Thus, they are difficult to be used when the
energy efficiency is important. Besides, these techniques re-
quire that the configuration data has many common bit pat-
terns and the size of configuration data must be enough large
to pay for the large compression overhead. Hence, they are
suitable for FPGAs [12]–[14] but not for the CGRAs.

Multicasting is one of techniques for reducing the re-
configuration time with simple hardware. It enables the mul-
tiple PEs to be configured simultaneously by exploiting a
fact that a certain number of PEs use the same configura-
tion data. The multicasting is effective, especially when the
same data-flow-graph mapping is repeated on the PE array
to utilize data-level parallelism of an application.

RoMultiC is a multicasting method using two bit-maps
for the rows and the columns of the PE array [1], [2]. If the
configuration data are allowed to be overwritten, the latest
configuration for each PE is actually used for its operation.
A scheduling of multicasting proposed in [1] can reduce the
time for multicasting.

In general, the configuration data can be divided into
some fields such as an opcode and operands for ALU. In
RoMultiC [1], the PEs which have an identical configura-
tion for all fields are allowed to be multicasted. However,
the grain size of multicasted fields has not been well investi-
gated. When the partial fields are allowed to be written, the
number of PEs to be multicasted is increased. Here, we pro-
pose a fine grain multicasting method considering a practi-
cal configuration data format. In this work, we compare two
scheduling algorithms: 1) Espresso [3]-base algorithm and
2) Integer-Linear-Program (ILP)-base algorithm for the fine
grain multicasting. Next, we carry out further exploration
for the grain size based on a statistical analysis. Thereby, an
effective grain size for each algorithm is revealed.

Implementation overhead is also important as well
as reducing the configuration time. Thus, the proposed
schemes are implemented considering a real chip CGRA,
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and compared with a double buffer method from the view-
point of hardware overhead.

The contributions of this paper are as follows.

• A fine grain multicasting scheme is proposed for fur-
ther reduction of reconfiguration time,

• we analyze a trade-off between two algorithms for find-
ing multicasting bitmaps,

• the grain size exploration is performed, and
• we show the proposed method is more energy efficient

than other methods.

The rest of the paper is organized as follows. The
background of this paper and related work are introduced
in Sect. 2. Then, Sect. 3 and Sect. 4 give basic concept and
algorithms of the fine grain multicasting followed by exper-
imental results in Sect. 5. Finally, the conclusion of this pa-
per is summarized in Sect. 6.

2. Background

2.1 Base Architecture

CMA (Cool Mega Array) is a low power straight forward
style CGRA [4]. In this work, we use CC-SOTB (CMA-
Cube-SOTB) [5], which is an improved version of CMA,
as a base architecture for implementation of the proposed
method.

Figure 1 illustrates an array of 12×8 PEs in the CC-
SOTB. Each PE consists of an ALU and a switch element
(SE) as shown in Fig. 1. PEs are connected each other with
two types of interconnections: 1) direct links and 2) links
provided by SEs. The CC-SOTB uses a single-context con-
figuration. It can change tasks by transdering another con-
figuration for the next task. Thereby, a large power con-
sumption for a dynamic reconfiguration which changes the
configuration cycle-by-cycle can be cut down.

Fig. 1 Overview of the PE array

CC-SOTB is composed of several modules as illus-
trated in Fig. 2. The micro-controller controls data trans-
fer between the PE array and data memory using micro-
instructions stored in instruction memory. The constant reg-
isters provide constant values to the PE array. The configu-
ration controller decodes input configuration data and writes
them into the configuration registers. CC-SOTB has an ex-
ternal bus and a chip interface for connections to a host CPU
or other accelerators. The external bus consists of a 22bit
address bus and a 32bit data bus. Each module is mapped
to the same address space as shown in Fig. 3. Thereby, the
host CPU can access data in CC-SOTB modules via the in-
terface and the external bus. Data for each module are 4-
Byte aligned regardless of actual data width for compatibil-
ity with the host CPU which we assume is a 32bit processor.
Data width of the PE is 25bit so that the size of 2K words
data memory is totally 2048 × 25 = 50 Mbit. However, it

Fig. 2 Architecture of CC-SOTB

Fig. 3 Address map of CC-SOTB
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Fig. 4 Configuration data for CC-SOTB

Fig. 5 Multicasting of Configuration data

occupies 2048×32 = 64 Mbit address space. The data mem-
ory is separated into two blocks (front and back) for double
buffering.

2.2 Configuration Data Format

The configuration data for a PE are described in Fig. 4. OP-
CODE, SEL A, and SEL B respectively are used for the op-
eration of ALU and the selections of two multiplexers for
ALU inputs. NORTH, SOUTH, EAST, and WEST are used
to specify the routing in an SE. 20-bit per a PE is needed so
that the total amount of the configuration data is 20-bit × 96
= 1920-bit. A configuration of each PE is also mapped to
the address space. Therefore, it takes 96 cycles to complete
the reconfiguration without multicasting.

2.3 Multicast Configuration

In order to reduce the reconfiguration time, RoMultiC
scheme [1], which is one of multicasting method, is applied
to the CC-SOTB. In RoMultiC, the transferred data use two
bit-maps which respectively indicate multicasted rows and
columns in the PE array. As for a PE at the coordinate (x, y),
the configuration data are multicasted when both x-th bit of
the column bit-map and y-th bit of the row bit-map are set
to “1”. The data format for multicasting is shown in Fig. 5.
Unlike an original format used in [1], fields of the configu-
ration data are divided into 2 parts: 1) ALU part and 2) SE
part. The bit-maps need 8 + 12 = 20 bits and then 12 bits
remain for the configuration data of PEs. The part shaded
gray (2 bit) in Fig. 5 is unused.

In order to show how overwriting reduces the config-
uration data, we use a simple example illustrated in Fig. 6.
The example illustrates that the multicasting with the over-
write takes 3 cycles to complete the target configuration.
First, configuration “A” is multicasted to the whole PEs.
Next, configuration “B” is multicasted to two PEs at the
coordinates (1, 2) and (2, 2). Lastly, configuration “C” is
multicasted to two PEs at the coordinates (3, 2) and (3, 3).
Without the overwrite, it takes 4 cycles since the configura-
tion “A”s are completed with multicasting twice.

Fig. 6 Efficiency of overwriting configuration

2.4 Related Work

In general, configuration data of CGRAs have two types of
localities: 1) temporal locality and 2) spatial locality. With
the temporal locality, a PE keeps the same configuration dur-
ing a few cycles. If the spatial locality exists, the same con-
figuration in multiple PEs can be found at the same time.
This work focuses on single-context configuration CGRAs
so that only the spatial locality is considered. Likewise,
other techniques for reducing the configuration data exploit
the spatial locality with multicasting [2], [6], [7]. A hybrid
approach which combines multicasting with LZSS compres-
sion is proposed in [2]. In methods used in [6] and [7], the
range of multicasting is limited in order to minimize an area
overhead. Each of them does not aim to improve the spatial
locality while this work improves it by changing the grain of
multicasting. Also, our paper [8] at the earlier stage of this
research only proposes the concept of the fine grain multi-
casting. It does not demonstrate its effectiveness in a real
application. In addition, the grain size exploration of multi-
casting is not performed in [8].

The dynamic reconfiguration is applied to some
CGRAs for high performance computing. In such a CGRA,
the temporal locality is also utilized. The compression tech-
nique in [9] reduces the configuration data by eliminating
the configuration unchanged from the previous cycle. It
considers a group of fields which are compressed together
depending on a mapped application as well. Due to the
complexity of the compression, a genetic algorithm and an
integer linear program (ILP) are used. A dictionary-based
compression is proposed in [10]. This method separates two
types of dictionaries based on the locality of a mapped ap-
plication. Thereby, even if small dictionaries are employed,
enough compression ratio is achieved. [11] classifies each
field of the configuration data into three groups: necessary
fields, optional fields, and unnecessary fields. Then, the lat-
ter two fields are compressed adaptively.

In FPGAs (Field-Programmable Gate Arrays), con-
figuration data reduction is also important so that many
techniques are proposed. FPGAs usually have larger con-
figuration data than CGRAs. If the configuration data is
enough large, the same bits pattern could appear many
times. Therefore, dictionary-based compression algorithms
such as LZSS are often used for FPGAs. A technique in
[12] focuses not only on a compression ratio (CR) but also
on a decompression efficiency. It uses a dictionary-based
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compression with bitmasks, which is originally proposed in
[13]. In addition, run-length-encoding is employed in or-
der to achieve high CR. The bitmasks also help enhance the
CR. Even though data which try to be compressed does not
match any entries of the dictionary, it can be compressed
with the bitmask. When there is only a few bit difference
between the data and an entry, the bitmask is used to specify
the difference. Besides, [12] proposes a scheme to convert
a variable length coding into a fixed length coding. It en-
ables the decompressor to be more simple and high through-
put. [14] takes an approach using LZ77. According to
its analyses, there is variation in matching length. There-
fore, the method employs Golomb coding for the matching
length. [15] carries out trade-off analysis among resource
utilization, CR and decompression throughput. [16] uti-
lizes Golomb coding for both smaller compression time and
smaller compressed data than run-length-encoding.

In summary, most of the methods for FPGAs exploit
bit-level common patterns. However, as mentioned above,
CGRA’s configuration data is relatively small, especially
when the CGRA follows the task-by-task reconfiguration
policy. Therefore, for CGRAs, the bit-level compression is
not expected to make a significant contribution on the com-
pression ratio, or rather causes a large hardware overhead.

3. Motivation

3.1 Fine Grain Multicasting

As explained in Sect. 2.2, the configuration data are multi-
casted ALU-by-ALU or SE-by-SE. It is not clear that the
grain of multicasting is really effective in reducing the con-
figuration data. Here, we consider to use smaller units and
propose the fine grain multicasting.

In order to implement the scheme to CC-SOTB, a new
data format for the multicasting is described in Fig. 7. In the
fine grain multicasting, any combination of the fields can
be multicasted unless the required data size exceeds in the
available data size. Optimized combination of the fields can
increase the possibility of either multicasting more PEs or
utilizing the available data space in the format. Figure 7
shows an example of the best case that the data space is fully
utilized. In this case, the configuration data include 4 fields
which require 12 bits totally.

Although additional flag bits are necessary to decide
which fields the configuration data contain, in our case, it
can be included in the address space. In other words, only
128-byte address space has to be reserved for the fine grain

Fig. 7 Fine grain multicasting

multicasting. Assuming n fields, 2n-byte address space is
needed. In this work, we reserve an address space from
0x23 0000 to 0x23 007F as described in Fig. 3. The low-
est 7bits of the address are used for the flag bits. Of course,
the flag bits are included in the data format. Nevertheless,
it increases the overhead for multicasting in addition to the
bit-maps.

3.2 Using Espresso

As a way to find the suitable bit-maps, a natural way is using
CAD algorithms. Here, Espresso, a classic logic minimiza-
tion algorithm, is employed like [17]. It can treat “Don’t
Care” denoted by X as well as logic 0 and 1. A truth table
whose entry corresponds to each PE in the PE array is used
in Espresso. 1 indicates that the PE has the same configura-
tion data, while 0 means that the PE has a different configu-
ration data and is already written. X is used when a PE has
a different configuration data but have not been written yet.

Although Espresso itself is a highly efficient heuristic
algorithm, sometimes it does not work well to find the bit-
maps. For instance, when a target configuration shown in
Fig. 8 (a) is given, a truth table in Fig. 8 (b) for multicast-
ing configuration “A” is generated. The parts shaded gray
indicate PEs whose configuration is already written. Then,
a Karnaugh’s map associated with the row bit-map is cre-
ated as described in Fig. 8 (c). However, a cube which cov-
ers multiple cells cannot be found. A cube corresponds to
a group of multicasted PEs. In other words, the four PEs
which have the configuration “A” cannot be multicasted si-
multaneously.

It should be discussed how the disadvantage of
Espresso for the fine grain multicasting has an influence on
the reduction of configuration data. Here, we propose an-
other method using Integer-Linear-Program in the next sec-
tion.

Fig. 8 Worst case with espresso
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Algorithm 1 Greedy Algorithm for Overwrite Scheduling
Input: C
Output: Cordered

1: C f ix ← φ,Cun f ix ← C
2: while Cun f ix � φ do
3: Br , Bc, f , d ← find maximize pattern(C f ix,Cun f ix)
4: M ← multicasted set(Br , Bc, f , d)
5: C f ix ← C f ix + M
6: Cun f ix ← Cun f ix − M
7: insert(Cordered ,M)
8: end while

4. New Multicasting Method

4.1 Scheduling Algorithm

As mentioned in Sect. 2.3, scheduling an order of the over-
write is important to reduce the configuration data. Here,
we employ a greedy algorithm for scheduling similarly to
[1], [17] because of the simplicity of the algorithm.

The scheduling algorithm is described in Algorithm 1.
Given a target configuration C, finding the bit-maps which
maximize the number of written bits is repeated until the
configurations of all fields in the PEs are fixed. Please note
that the bits of multicasted fields which are overwritten later
are not counted for maximizing.

In this work, two algorithms are presented as the func-
tion “find maximize pattern” respectively in the Sect. 4.2
and the Sect. 4.3. Both algorithms return bit-maps for the
rows Br and the columns Bc, the group of fields in the con-
figuration format f , and multicasted data d. The returned
values are inserted into an ordered configuration data Corder.

4.2 Espresso for Finding the Bit-Maps

Algorithm 2 shows a solution for finding the bit-maps with
Espresso. C f ix is a set of fixed configurations and they can-
not be overwritten except when all multicasted fields are the
same as the one previously written. In this case, the value of
the truth table is set to X (Don’t care).

Like Fig. 8, a truth table tt for each combination of the
fields f and for each configuration data d are generated.
2F denotes the power set of the fields F, that is, possible
combinations of the fields. In our case, |F| equals 7 so that∣∣∣2F
∣∣∣ equals 128. However, there exist invalid combinations

because some of the combinations require more than avali-
able data space (12 bit). Therefore, the number of the valid
combinations is 94. The validation of the combinations is
checked at line. 4 in Algorithm 2.

After Espresso finds cubes, bit-maps of the rows and
the columns for each cube are generated. Then, the sum of
written bits is calculated and the best bit-maps Br,max and
Bc,max are obtained. This method does not maximize the
number of bits multicasted at the same time, but maximizes
the number of multicasted rows and columns for given com-
bination of the fields. This is because Espresso can treat
only a single output logic.

Algorithm 2 Algorithm for obtaining bitmaps with
Espresso
Input: C f ix,Cun f ix

Output: Bmax,r , Bmax,c, fmax, dmax

1: S max ← 0, Br,max ← None, Bc,max ← None,
fmax ← φ, dmax ← None

2: F = {OPCODE, S EL A, S EL B,
NORT H, S OUT H, EAS T,WES T }

3: for all f ∈ 2F do
4: if bit width( f ) ≤ max width then
5: D← enumerate config data(Cun f ix, f )
6: for all d ∈ D do
7: tt = make truth table(C f ix,Cun f ix, d, f )
8: Br, Bc = espresso(tt)
9: for all br , bc ∈ Br, Bc do

10: S ← count bits(br , bc, f )
11: if S > S max then
12: S max ← S , Br,max ← br , Bc,max ← bc

13: fmax ← f , dmax ← d
14: end if
15: end for
16: end for
17: end if
18: end for

Algorithm 3 Algorithm for obtaining bitmaps with ILP
Input: C f ix,Cun f ix

Output: Bmax,r , Bmax,c, fmax, dmax

1: S max ← 0
2: for all d ∈ enumerate config data(Cun f ix) do
3: S , Br , Bc, f ← find bitmap by ILP(C f ix,Cun f ix, d)
4: if S max > S then
5: S max ← S , Bmax,r ← Br , Bmax,c ← Bc

6: fmax ← f , dmax ← d
7: end if
8: end for

4.3 ILP for Finding the Bit-Maps

In addition to the Espresso-based algorithm, we consider us-
ing an integer linear program (ILP) in order to obtain an
optimal solution of the bit-maps. An overview of the algo-
rithm is shown in Algorithm 3. In addition, an ILP model
used in the function “find bitmap by ILP” is formulated as
follows.

isFieldi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if the i-th field

is written
0 otherwise

(1)

isRowj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if the j-th row

is written
0 otherwise

(2)

isColk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if the k-th column

is written
0 otherwise

(3)

max S =
∑

i

∑

j

∑

k

S i jk ∗ isFieldi ∗ isRowj ∗ isColk (4)

subject to
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∑

i

bit widthi ∗ isFieldi ≤ bit widthmax (5)

if i-th field of the PE in the j-th row and the k-th column
is already fixed, then

isFieldi = 0 ∨ isRowj = 0 ∨ isColk = 0 (6)

where S i jk is the number of bits for i-th field of the PE in
the j-th row and the k-th column, bit widthi is the bit width
of configuration data in i-th field, and bit widthmax is avail-
able bit width in a multicasted data. S i jk is non-zero value
only if i-th field of the PE in the j-th row and k-th column
has the same the configuration data which are considered
to be multicasted. The first constraint ensures that required
configuration data space does not exceed the available data
space. The second constraint guarantees that the fixed con-
figuration data are not overritten.

Given a multicasted configuration data, each S i jk

can be calculated. Therefore, S i jks are constant values.
bit widthi and bit widthmax are also constant. At first glance,
the objective function is not linear. However, the product of
binary valuables can be replaced with an additional variable
and two constraints. For example, considering the product
of isField0, isRow0 and isCol0, it can be replaced with a
new variable y000 with two constraints: y000 ≤ isField0 +

isRow0+isCol0−2 and 3∗y000 ≥ isField0+isRow0+isCol0.
Thus, the objective function can be formulated as a linear
function.

The ILP for each unfixed configuration data d is solved
repeatedly. Unlike the Espresso-based algorithm, the ILP-
based algorithm consists of only a loop because the combi-
nation of the fields and the bit-maps are decided at the same
time.

An ILP is solved by the function “find bitmap by ILP”,
then, isRows, isCols and isFields are respectively returned
as Br, Bc and f .

5. Evaluation

5.1 Evaluation Setup

First, we develop tools which can generate data for multi-

Fig. 9 Examples of fixed configuration data size during reconfiguration for each methods

casting with the three methods: 1) the previous method, 2)
fine grain multicasting with Espresso (FGM-E) and 3) fine
grain multicasting with ILPs (FGM-I). The possibility of re-
ducing the configuration data for each method is then eval-
uated. Evaluation environment is shown in Table 1. Both
FGM-E and FGM-I have a high degree of data-level paral-
lelism associated with the configuration fields. Therefore,
we can easily parallelize them with multiprocessing pack-
age included in the Python standard library. We limit the
size of multiprocess to 12 because it is enough size for these
algorithms. Memory utilization of the algorithms is at most
600MB (FGM-I).

The drawback of Espresso depends on a mapping size
of an application. For instance, when many PEs are utilized,
Espresso is likely to fail the multicasting. In order to eval-
uate the influence, a lot of data-flow-graphs (DFGs) with
various node size are generated randomly. Then, the multi-
casted data for each method are calculated. A range of PE
utilization of the randomly generated DFGs is from 35% to
75%.

5.2 Reduction of the Configuration Data

Figure 9 describes how much the configuration data are mul-
ticasted with the three methods respectively. Two DFGs dif-
ferent in sizes are selected as examples. In case of a small
DFG which utilizes 2 PE columns (Fig. 9 (a)), FGM-I finds
the same or more multicasted data than FGM-E. Although
both of them consequently take the same configuration time
(13 cycles), they complete the configuration 2 cycles faster

Table 1 Evaluation environment

Implementation
Programing Python 3.4.5

Parallelization multiprocessing
LP modeler PuLP 1.6.5
ILP solvver CBC 2.9.0

Espresso PyEDA 0.28.0
Execution

CPU Intel Xeon CPU E5-2667 2.90GHz
Memory 128GB

Muximum process size 12
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Fig. 10 Reduction ratios for each algorithm

Table 2 Application features

Application Description No. of used columns
gray 24 bit (RGB) gray scale 2
sepia 8 bit sepia filter 3

af 24 bit (RGB) alpha blender 4
sf 24 bit (RGB) sepia filter 3

Fig. 11 Reduction effect on real applications

than the previous method. For another example, if 6 PE
columns are used (Fig. 9 (b)), FGM-I also finds more multi-
casted data and finishes the configuration in 6 fewer cycles
than FGM-E.

The average reduction ratio between the previous
method [1] and both FGM-E and FGM-I is shown in Fig. 10.
Compared to the previous method, the FGM-I achieves
23.8% reduction of configuration data in average. Origi-
nally, the previous method can reduce the configuration data
by 60% in comparison with the single-cast method. As ex-
pected, the larger DFG is configured, the smaller reduction
ratio of FGM-E can be observed. On the other hand, FGM-I
achieves similar reduction ratio for all configurations.

Furthermore, three methods are applied to four image
processing applications summarized in Table 2. Each of
them does not require the whole PE array as described in
Table 2. Therefore, the DFG of each application is dupli-
cated on the PE array. For example, the DFG of gray can be
duplicated 6 times.

The results are shown in Fig. 11. In case of gray, the re-
duction effect of FGM-E is not different from that of FGM-I,

Fig. 12 Resource utilization for each application

Fig. 13 Execution time for each method

since it needs a small number of columns. However, com-
pared to the case of random DFGs in Fig. 10, the reduction
ratio is not so large.

The small reduction is associated with an utilization of
SEs in the PEs. When a few SE is used, ALU configurations
account for almost all of the configurations. Therefore, it is
enough to multicast to the ALUs. The resource utilization
for each application is shown in Fig. 12. Compared to other
applications, sepia utilizes more than twice the SEs. In case
of sepia, FGM-I achieves about 40% reduction due to high
utilization of the SEs.

5.3 Time to Schedule the Configuration Data

Compilation time of the CGRAs is also important. In gen-
eral, application mapping takes most of the compilation
time, and it is completed within a few seconds to a few
hours even by state-the-art mapping techniques [18]–[20].
For the multicasting, an additional compilation time in or-
der to make the configuration data is required. Therefore,
we evaluate the execution time for each algorithm.

Figure 13 depicts the execution time to obtain the mul-
ticasting data for each algorithm. Although FGM-I indicates
better reduction ratio than FGM-I and the previous method
regardless of the DFG size, it takes a long time to generate
the multicasted data. When the large DFG is configured,
FGM-E also takes a long time
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Fig. 14 Pareto chart of frequency in the use for each fields pattern

Table 3 Top 11 frequently used field patterns

Rank Pattern Bit width Frequency (%)
1 NORTH 3 10.2
2 OP,SEL A,SEL B,SOUTH 12 9.92
3 OP,SEL A,SEL B 10 4.86
4 OP 4 4.57
5 OP,SEL A,SEL B,WEST 12 3.75
6 NORTH,WEST 5 3.60
7 EAST 3 3.39
8 OP,SEL B 7 2.90
9 WEST 2 2.74
10 SOUTH 2 2.73
11 NORTH,SOUTH 5 2.40

5.4 Grain Size Exploration

Based on the results in Fig. 10, we analyzed how often each
field pattern is used for multicasting. The results are shown
in Fig. 14 and Table 3. They clearly show the frequencies
of them are strongly biased. For example, the 11 most fre-
quently used patterns account for about 50% usage. In order
to cover 80%, it is enough to use 34 patterns.

For grain size exploration, we evaluated the reduction
effect for each algorithm while changing a grain size, that
is, the number of available field patterns. We evaluated size
of 11, 16, 23, 34, and 51 corresponding to 50%, 60%, 70%,
80%, and 90% coverage of the frequencies, respectively. If
the ILP is used, the limited field patterns make constraints
of the ILP more complicated. As a result, it takes about 3.5
times longer time to solve an ILP problem. Thus, we mod-
ified the algorithm using ILP in order to shorten the execu-
tion time. Like the algorithm with Espresso, the modified
ILP finds only the optimal bitmaps, and the optimal filed
pattern is found by using the ILP iteratively. Here, the num-
ber of iteration is related to the grain size.

Figure 15 shows both the reduction effect and the exe-
cution time for each algorithm. In spite of the modification
of the algorithm using ILP, its execution time is still long. In
the worst case, the ILP for the grain size of 51 (90% cover-
age) takes 3 times longer execution time than that of the full
support case (100% coverage). Besides, the reduction ratio
is significantly decreased by increasing the grain size. Thus,

Fig. 15 Results for each grain size

Table 4 Area overhead for each implementation

area (mm2) overhead (%)
previous method 0.944 —

FGM 1.04 9.76
double buffer 1.73 73.1

Table 5 Power consumption during the configuration for each imple-
mentation

Dynamic power (μW) Static power (μW)
previous method 514.5 6.125

FGM 329.3 6.247
double buffer 546.2 11.76

in terms of both the reduction effect and the execution time,
it is not effective to increase the grain size.

On the other hand, the execution time of the algorithm
with Espresso is reduced greatly thanks to the smaller search
space. In addition, the reduction ratio is close to the fine
grain case when the grain size is higher than 34 (80% cover-
age). If only 34 patterns are used, the overhead for indicat-
ing the multicasted fields decreases to about one-third (34 /
94).

5.5 Overheads

The CC-SOTB architecture with the configuration controller
which supports the fine grain multicasting is implemented
using SOTB 65 nm process technology with Synopsys De-
sign Compiler to analyze overheads of the proposed method.
For comparison, another method with a double buffer is also
implemented. Using the double buffer like a context switch-
ing is another way to address the long reconfiguration time.
Instead of reducing the transferred data, it aims to hide the
latency of reconfiguration.

Area overhead for each implementation is shown in Ta-
ble 4. Twice the size of configuration registers causes a large
area overhead while the overhead of the proposed FGM is
not too large.

In addition, Table 5 describes a power consumption for
each implementation. The power consumption is evaluated
with Synopsys PrimeTime and Cadence NC-Verilog. The
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Fig. 16 Power consumption and area overhead for each grain size

operating frequency and the supply voltage are set to 30
MHz and 0.55 V, respectively. Both the previous method
and the method with the double buffer consume almost the
same dynamic power. However, the double buffer consumes
about two times of the static power. On the other hand,
the proposed method achieves 35.6% lower dynamic power
consumption than the previous method. This is because
writing the configuration data finely minimizes unnecessary
switching in the configuration registers. Considering the re-
configuration time shortened by 23.8% in average, 50.1%
reduction of energy consumption can be achieved.

In the previous subsection, we analyze how much
changing the grain size affects the reduction ratio and the
execution time. Next, we implement configuration decoder
for each grain size. Then, hardware overhead for each grain
size is evaluated. In the full support case (100%), as ex-
plained in Sect. 3.1, the flag bitmap is used in order to spec-
ify which fields the data contain. However, in the reduced
cases such as “50%”, the bitmap manner is too excessive.
Hence, an LUT-based decoders are implemented for the re-
duced cases. For example, in the “50%” grain size, 11 field
patterns are used so that it requires only 4 bits to distinguish
them. Please note that the 4 bits are also contained in the
address space like the flag bitmap.

The average power consumption of the four applica-
tions for each grain size is shown in Fig. 16. The power is
calculated at the same condition as Table 5. The results re-
veal the reduced grain size does not contribute to the power
reduction. Because of the difference of decoder types, the
full support needs a little more power consumption of com-
binational circuits. In contrast, it saves the power consump-
tion of the configuration registers. The area overheads are
also shown in Fig. 16. The result suggests that the LUT-
based decoders from 50% to 70% are effective. In other
cases, the flag bitmap method is better. However, the differ-
ence in the area overheads is not so large.

6. Conclusion and Future Work

In this work, we have introduced a new configuration mul-
ticasting scheme for CGRAs. By optimizing the grain of
multicasting, the proposed method can reduce both the con-

figuration data and the dynamic power consumption. In or-
der to generate multicasted data, two algorithms based on
Espresso and ILP respectively are considered. As the ex-
perimental results, they provide a possibility of a trade-off
between the reduction ratio and the execution time. When
the proposed method is applied to real applications, about
40% reduction of the configuration data can be achieved in
the best case. Furthermore, the energy consumption can be
reduced by nearly half.

In the evaluation of this study, relatively small DFG
applications are employed. Therefore, an evaluation with
more complicated and larger DFGs will be performed in fu-
ture work. In addition, we should assess a reduction of an
application runtime as well as the configuration time reduc-
tion.
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