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Abstract—Coarse-grained reconfigurable architectures
(CGRAs) is one of the suitable devices for IoT (Internet of
Things) and edge-computing because of their high energy
efficiency and programmability. The CGRAs process a compute-
intensive part of an application program (especially a loop
part) more efficiently than general purpose processors. CMA
(Cool Mega Array) is an energy-conscious CGRA with a
task-level reconfiguration instead of a cycle-level one. However,
the CMA faces some limitations related to data management
because of the aggressive pursuit of power saving. In this
paper, we introduce a new CMA architecture VPCMA2 to
relax the constraints and to improve energy efficiency. Then,
we implement it with a 65-nm process technology to evaluate
a hardware overhead due to the improvement. According to
the evaluation results, the new design does not influence its
maximum operating frequency. Although new functionalities
brought about 17% power overhead and 10% area overhead, a
remarkable improvement of application mappability and data
handling was achieved.

I. INTRODUCTION

Recently, IoT (Internet of Things) and edge-computing have
grown significantly, and consequently, highly energy-efficient
and flexible devices are needed. Coarse-grained reconfigurable
architectures (CGRAs) are one of the hardware platforms
which satisfy these demands. CGRAs provide word-level re-
configurability instead of a bit-level one such as FPGAs (Field-
Programmable Gate Arrays). Therefore, hardware overhead for
the reconfigurability is small, and then they can achieve high
energy efficiency close to that of ASICs (Application Specific
Integrated Circuits).

CMA (Cool Mega Array) has been proposed as a low power
CGRA [1]. Similar to other CGRAs, it consists of an array of
PEs (Processing Elements) as illustrated in Fig. 1. The PE
array performs a task-level reconfiguration. In other words,
the configuration does not change during the execution of a
single application kernel. This reconfiguration strategy reduces
the dynamic power consumption dramatically, however, brings
less flexibility than the CGRAs with cycle-by-cycle reconfig-
uration. To tackle this shortage, CMA has a dedicated micro-
controller, which is a 16-bit tiny RISC processor and provides
flexible data transfer between the PE array and data memory
according to microinstruction codes.

In general, multi-bank data memory is connected to the
PE array with a high bandwidth switch like a crossbar in
order to avoid stall due to memory access conflicts. Likewise,
previously proposed CMAs[2], [3] used “data manipulator”

for the interconnection. The data manipulator is a N × N
network and is composed of N multiplexers (MUXs). The
number of input ports and output ports N is the same as that of
memory banks. Thanks to the MUXs, input data to a port can
be transferred to arbitrary output port according to a transfer
table. There exist two data manipulators. One is used when
loading data to the PE array from the data memory, and the
other is for storing data to the data memory from the PE array.

In the CMA, accessed data for each bank is limited to
be aligned sequentially in its address space. For instance,
assuming 12 memory banks, the PE array can simultaneously
load data in the address range of 0x0-0xB. Although such
an access constraint causes inefficiency of data handling, it is
sufficient for simple application kernels as used in [2], [3].
Besides, the constraint makes memory architecture simple so
that power consumption related to the memory access can be
reduced. Nevertheless, considering more practical applications,
the access constraint is obviously unacceptable.

In this work, we propose a data access method removing
the constraint. In addition to the memory access, a limitation
of constant registers in the PE array is relaxed to enhance the
mappability of complex application kernels. However, such
improvement of functionality will increase area and power
consumption. This paper analyzes trade-offs between rich data
handling capability and hardware overheads for the task-level
reconfiguration CGRAs such as CMA.

The rest of the paper is organized as follows. Overview of
the latest CMA architecture and related work are introduced
in Section II. The enhanced CMA architecture is proposed in
Section III Then, evaluation results are shown in Section IV.
Finally, the conclusion of this paper is summarized in Sec-
tion V.

II. BACKGROUND AND RELATED WORK

Some CGRAs support a cycle-level reconfiguration which
changes the configuration of the PE array every clock cycle.
However, this reconfiguration strategy requires a large amount
of dynamic power consumption. Therefore, another type of
CGRAs employ a task-by-task reconfiguration in order to save
the dynamic power consumption. In this paper, we call those
simple CGRAs “Straight Forward CGRAs” (SF-CGRAs).

The SF-CGRAs is designed to form a straightforward
dataflow on their PE array as shown in Fig. 2. If input
data are just forwarded through the PE array, computation
results are finally outputted since the SF-CGRAs use the sameThis work is partially supported by JSPS KAKENHI B Grant Number

18H03215 and JSPS KAKENHI Grant Number 19J21493.
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Fig. 2: An overview of SF-CGRA

configuration while handling a task of an application. Registers
in the PE array can be regarded as pipeline registers. Permuta-
tion networks between the data memory and the input/output
of the PE array provide flexible data transfer. For example,
Piperench [4], Kilo-core [5], S5 engine [6], and EGRA [7]
are classified into the SF-CGRAs. Some application mapping
methods[8], [9], [10], [11] consider statical mapping during
the task so that they can be applied to the SF-CGRAs.

CMA architecture is also categorized in the SF-CGRA [1].
A PE of the CMA does not have a register file to hold
intermediate results. Therefore, the PE array is composed
of a large combinational circuit, and can save the dynamic
power consumption since clock single for the PE array is
not necessary. Although it suffers from a long critical path
delay, the PE array is designed to be multi-cycle paths.
Hence, it does not degrade a system clock frequency. The
number of execution cycles is programmable depending on a
mapped application. However, there still exists a performance
bottleneck due to the low throughput of the multi-cycle PE
array.

A. VPCMA Architecture

The latest version of the CMA called as VPCMA (Variable
Pipelined CMA) has been proposed in order to overcome
the bottleneck[3]. Unlike the original CMA, the PE array of
VPCMA has a limited number of pipeline registers as shown
in Fig. 1. They are placed between every row. VPCMA has
the 8×12 PE array so that there are seven pipeline registers. It
includes a micro-controller, a data manipulator and a 12-bank
memory as well as previous CMAs[2].

As illustrated in Fig. 1, each PE is composed of an
arithmetic logic unit (ALU), input selectors, and a switching
element (SE). PE does not have register file so that an output of
the ALU is transferred to the adjacent PEs through the link by
the SE (the solid line in the PE) or direct-link (the dashed line
in the PE). Three direct-links go to the north, northeast, and
northwest directions. Constant registers provide two constant
values for each PE row. If a PE row needs more than two
constant values, unused constant registers in lower PE rows
are utilized through the interconnection network. The pipeline
register composition is also described in Fig. 1. Each pipeline
register is activated by the configuration data and works as
a standard register. On the other hand, deactivated pipeline
registers are clock-gated, and input data are bypassed to upper
PEs by the multiplexers. In this way, it can form various
pipeline structures so as to fit a mapped application and to
minimize the overhead of the pipelining. Please note that no
register is placed on the south direction path from the north
PE because it just returns computational results.

The micro-controller is a customized tiny RISC processor
with the 16-bit length instruction set. It manages data transfer
between the PE array and the banked data memory according
to the instruction codes. “Fetch register” and “Gather register”
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Fig. 3: Examples of pipeline execution of the PE array

are respectively connected to inputs and outputs of the PEs
in the 1st row. The micro-controller writes data to the fetch
register, and then, the PE array runs automatically. After a
few cycles, the output data will be written back to the gather
register. In this paper, we call the former operation is “fetch”
and the latter one is “gather”.

Here are execution examples of the VPCMA in Fig. 3. We
consider two cases: 1) taking one cycle per stage (Fig.3(b))
and 2) taking two cycles per stage (Fig. 3(c)). In both cases, we
assume a 4-stage pipeline structure as illustrated in Fig.3(a).
“DELAY” operation is a dedicated instruction to specify the
cycle number. For the one-cycle execution, four-cycle delay
is designated whereas eight-cycle one is applied for the two-
cycle execution. “SET LD” and “SET ST” respectively set
configurations for fetch and gather operations. They require
two arguments: the first means initial memory address for
fetch/gather and the second is an incremental number of the
address. The fetch and gather operations fuse together into an
instruction “LDST ADD”. The fetch operation is executed as
soon as the “LDST ADD” is issued. In contrast, execution of
the gather operation is delayed like Fig. 3(b). This instruction
also needs two arguments to specify transfer tables for the
data manipulator. Details of the table are explained in subsec-
tion. III-A. The fetch and gather address are automatically
incremented by the specified number at the end of each
execution. For the two-cycle execution, “NOP” instruction
has to be inserted every “LDST ADD”s. The micro-controller
supports some branch instructions such as “BNZD” (Branch
Not equal to Zero with Decrement). In both case, “BNZD”
examines whether the value of register r0 is not equal to
zero, and then, branches and decrements the register value
if true. These branch instructions take one cycle so that it
delays the “LDST ADD” in the next iteration in case of
the one-cycle execution. On the contrary, for the two-cycle
execution, it substitutes the “NOP” instruction. Besides, the
micro-controller executes integer arithmetic and logical op-

erations between general purpose registers. Finally, “DONE”
instruction is executed, and then, completion of the task is
notified to a host processor.

B. Data manipulator

The data manipulator takes a role as the permutation net-
work which provides flexible data transfer among the banked
memory, fetch register, and gather register. Fig. 4 shows
examples of fetch operation with the data manipulator. In
the examples, the fetch address and the incremental number
are respectively initialized to 0x0 and 8 by the “SET LD”
instruction. When the fetch operation is executed, twelve
consecutive words starting at the fetch address are loaded
from the 12-way interleaved bank memory. Then, they are
shifted as a bank data at the fetch address is placed on the first
input if necessary. In case of the first fetching (Fig. 4(a)), it is
not necessary whereas the second fetching (Fig. 4(b)) needs
the shift operation because the 8th bank contains the head
data. The data manipulator is composed of twelve multiplexers
so that it can transfer any input of the shifted data to any
position of the fetch register depending on a transfer table.
The transfer table includes a mask pattern as well. VPCMA
has 16 tables for the fetch and gather operation respectively.
Therefore, if an application task contains different memory
access patterns, the micro-controller just changes transfer
tables without reconfiguration.

C. Related work on data management

Regardless of reconfiguration policy, memory access by the
PE is usually limited to some extent. For most of CGRAs
supporting the cycle-level reconfiguration, PEs in the same row
shares links to the data memory so that they can not access
to the data memory simultaneously. Hence, it is important
to take care of memory allocation because inefficient data
placement brings about significant performance degradation.
Some researches propose optimization methods for the data
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Fig. 4: Data transfer by the data manipulator

placement [12], [13], [14]. MEMMap[15] is one of sophisti-
cated mapping technique to exploit the data memory as routing
resource between PEs. It also considers memory allocation
since the efficiency of the memory access impacts on the
mapping quality significantly. However, they assume the cycle-
level reconfiguration so that it is not clear whether these
methods are appropriate for the SF-CGRAs.

A powerful memory architecture is also employed as an-
other approach to improve data management. CPM[16] and
SPIRA[17] present enhanced memory architectures for data
sharing between the PE array and controller. Although they
can reduce data transfer time and control overhead, they
do not contribute to an improvement in the mappability of
applications.

III. PROPOSED ARCHITECTURE

The VPCMA architecture explained in the previous section
has the following three limitations in data handling. In this
work, we propose a new architecture VPCMA2 relaxing these
constraints.

• Sequential interleaving access to the banked memory

• Only two constant values available for each PE row
• No general-purpose data bus for the micro-controller

A. Enhancement of data manipulator

In order to overcome the bank access constraint, VPCMA2
improves its data manipulator. Assuming a sample loop code
in Fig. 5(a), the previous data manipulator cannot handle it
naturally because an element of the array a is at most 64
words apart from that of array b. The distance is too far for
the previous data manipulator which can access 12 consecutive
words. Therefore, we have to rearrange the elements of array
a and array b alternately like a[0], b[0], a[1], b[1], ... in the data
memory. However, the rearrangement takes additional data
transfer time. In addition, array b have to be duplicated three
times for a[16 : 31], a[32 : 47], anda[48 : 63] so that it wastes
more memory space.

Then, we add address offset as new content of the transfer
table as described in Fig. 5(c). The transfer table includes the
same contents illustrated in Fig. 4(a), and they are omitted
because of limited space. Fig. 5(c) and Fig. 5(d) show exam-
ples of improved bank access while executing the loop code.
In this example, four iterations are executed on the PE array
simultaneously like a SIMD processor. In the beginning, the
address for each bank is calculated based on the fetch address
according to the algorithm in Fig. 5(b). Although the algorithm
itself is not different from the previous data manipulator, the
proposed one adds each offset to each calculated address. In
the 1st iteration, all calculated addresses are 0, and, 5th-8th
bank’s offsets are set to 5 to fetch a[0 : 3] and b[0 : 3]
simultaneously. Then, each bank address is updated in the
2nd iteration since the fetch address is incremented by 4.
Similar to the data shifting as explained in the previous section,
the address offsets are shifted. Hence, we can use the same
transfer table. Even though the access pattern is different, we
just switch the transfer tables. In this example, we have to
change it between the 4th iteration (for a[12 : 15]) and the 5th
iteration (for a[16 : 19]) because offset values to the array b
is also changed. Besides, array allocation should be optimized
to avoid a bank conflict.

B. Improved connectivity to the constant registers

The constant registers of VPCMA provide 16 constant
values with the PE array. Nevertheless, the PEs cannot use
them freely. A PE row is connected to a constant register
containing two constant values. If PEs in the row need more
constant values, they have to borrow constant registers from
different rows through the interconnection network on the PE
array. However, it consumes more routing resources and often
results in application mapping failure due to the insufficient
resource.

To eliminate the limitation, we enrich the connectivity
between the PEs and the constant registers. The number of
constant values in the VPCMA2 remains sixteen, yet PEs
can use any of these values. Instead, SEs cut interconnection
links for the constant value routing. It causes an increase in
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Fig. 5: Improvement in the interleaving memory access
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configuration data, and its impact is evaluated in the next
section.

C. Extended instruction set of the micro-controller

VPCMA has only an external bus to communicate with
a host processor. The host processor reconfigures the PE
array and transfers all of the data including instruction codes,
processing data, and constant values through the bus. In other
words, the VPCMA needs control by the host processor to
change some data even though the changed part is quite small.
Moreover, the micro-controller cannot load data in the data
memory to its general purpose registers. Therefore, it cannot
handle an application task whose iteration count depends on
its own processing result.

To address the issue, we add a new general-purpose bus
to the new micro-controller as shown in Fig. 6, and then,
extends its instruction set to use the bus. Each component such
as data memory and instruction memory is placed in 22-bit
address space. The address space for the bus is common to the
external bus. However, the word length of the micro-controller
is 16-bit whereas most of the other components are designed
with 25-bit or 32-bit word length. Therefore, two registers
are combined to store a double-word number. Double-word
instructions including “ADD.D” are accordingly implemented.
Thanks to the bus, the VPCMA2 can do self-reconfiguration
efficiently as far as the difference in the configuration is

PE Array

wireless

chip interface

Fig. 7: Chip photograph of the VPCMA

relatively small. A bus arbiter prioritizes the bus over the
external bus while the micro-controller is working.

IV. EVALUATION

A. Evaluation Setup

In order to evaluate hardware overhead due to relaxing
the limitation of data manipulation, we have designed the
proposed VPCMA2 architecture with Verilog HDL. Then,
the design has been synthesized with Renesas SOTB 65-nm
technology. The previous version VPCMA have also been
implemented as a real chip with the same process [11]. Fig. 7
is a chip photograph of the real chip. These specifications are
shown in Table I. For the SOTB process, two options were
available: LP (Low Power) and LSTP (Low STanby Power).
The LSTP version consumes lower leak power than the LP
one, while it consumes larger dynamic power because of
the higher standard supply voltage. According to preliminary
evaluation, an RTL design can be synthesized at about 25%
faster timing constraints with LSTP version than LP one.
The VPCMA employs the LP version whereas the VPCMA2
utilizes the LSTP version since only the LSTP option is
currently available.

B. Hardware overhead

1) Maximum operation frequency: Compared to the
VPCMA, the capability of the data manipulator of VPCMA2 is
improved. It could bring degradation of maximum operating
frequency. To evaluate its effect, we designed two versions



TABLE I: Implementation environment and power consump-
tion

VPCMA[11] VPCMA2 (this work)
Design Verilog HDL
Process Renesas SOTB 65 nm
Library LP (Low Power) LSTP (Low STandby Power)

Standard 0.55 V 0.75 Vsupply voltage

Synthesis Synopsys Design Compiler
2016.03-SP4 2017.09-SP1

Place and route Synopsys IC Compiler N/A2016.03-SP4
Power consumption at 30MHz

Static (µW) 126.0 25.18
Dynamic (mW) 3.337 4.029

Total (mW) 3.463 4.053

TABLE II: Hardware overhead for each design

VPCMA VPCMA2 VPCMA2
(1 cycle f/g) (2 cycle f/g)

Frequency (MHz) 87.71 95.23 125.0
75% scaled N/A 71.42 93.75

Cell area (mm2) 10.04 14.55 14.22except for PE array

of the VPCMA2: 1) one-cycle fetch/gather operation and 2)
two-cycle fetch/gather operation. Table. II shows achieved
maximum frequency for each design reported by synthesis
results. It includes 75% scaled values to consider the pro-
cess difference. Obviously, two-cycle version achieves higher
frequency than one-cycle version. In addition, it enhances the
operating frequency by around 6% compared to the VPCMA
despite the data manipulator extension. This is because the
original data manipulator of the VPCMA contains the critical
path while the two-cycle version of the VPCMA makes
another part of its critical path. Of course, the frequency of the
VPCMA becomes high by applying the two-cycle fetch/gather.
However, the increase is expected only to the same extent
as the VPCMA2. In contrast, one-cycle design degrades the
frequency by about 18% compared to the VPCMA.

2) Area overhead: The improvement of the VPCMA2
requires more chip area than the VPCMA. Then, we analyze
the standard cell area of the synthesized netlists at 50MHz
timing constraint that is the same condition as the real chip
implementation of the VPCMA. Table. II summarizes cell area
for each design without the PE array. Although both designs
of the VPCMA2 increase about 40% area compared to that
of the VPCMA, the PE array occupies most of the cell area
for all designs. In case of the two-cycle version, the whole
cell area is 50.28mm2 so that the total area overhead is less
than 10%. The two-cycle version of the VPCMA2 is slightly
smaller than the one-cycle version. Considering the result
of maximum frequency, the two-cycle version is appropriate
rather than the one-cycle version. One cycle latency for the
bank access does not matter because the computation on the
PE array naturally takes several cycles latency. Hereafter, only
the two-cycle design is employed.

3) Power overhead: Here, the power consumption of the
VPCMA2 is compared with that of the VPCMA. Table. I
also shows result of the power consumption. The power of

TABLE III: Application kernels

kernel Description Data size Operations
RGB2YCC converting color encodings 4 blocks 30

DCT Discrete Cosine Transform 6 blocks 63

Quantize Quantization 12 blocks 15of the DCT coefficient

VPCMA is a measurement result of real chip experiment[11]
while that of VPCMA2 is simulated with Synopsys PrimeTime
and based on switching activities obtained by Cadence NC-
Verilog gate-level simulation. To simulate the power under the
same condition as the VPCMA experiment, clock frequency is
set to 30MHz, and an identical application mapping is utilized.
Used application is grayscale of an image. The static power
of the VPCMA2 is about 5× smaller than VPCMA because
of the difference of SOTB process version. Nevertheless, in
both cases, the dynamic power consumption is dominant. As
a result, VPCMA2 increases 17% total power consumption
compared to the VPCMA. However, it is partially due to
the increase of standard supply voltage from 0.55 V to 0.75
V. Hence, the power overhead attributed to the extended
functionality is considered to be small.

C. Increase of configuration data

The proposed scheme increases two types of configuration
data: 1) contents of the transfer table and 2) mapping between
the constant registers and the PEs. We evaluate them quanti-
tatively.

1) Transfer table: In the previous VPCMA, the transfer ta-
ble consists of 4-bit × 12 = 48-bit of multiplexer configuration
and 12-bit mask. However, in fact, they are treated as three
words (1 word = 25-bit) due to data segmentation. Besides,
the transfer table of the VPCMA2 contains the offset values as
proposed in the previous section. Memory depth for each bank
is 64 words in both the VPCMA and VPCMA2, and thus, at
most 6-bit for each bank is needed. They can be packed into
three words. Therefore, the size of transfer table of VPCMA2
is twice as large as that of VPCMA.

2) Constant mapping: In case of the VPCMA, PEs in the
same row share two constant values. Each PE specifies which
constant values to use as a part of ALU configuration. For
VPCMA2, additional 4 bits for each PE are needed to choose
one from sixteen values. Considering 20-bit configuration for
ALU and SE in the PE, 4-bit configuration for the constant
mapping causes 20% increase of configuration data.

D. Improvement on application tasks

To demonstrate the improvement of data management in the
VPCMA2, we use three application tasks included in JPEG
encoding as listed in Table. III. 8×8 chunk of pixels is treated
as one block (minimum coded unit), and 4:1:1 of sampling
factor is employed. They are based on MiBench source code
[18]. At first, the source codes written in C language are
compiled by clang 4.0, which is a front-end compiler of
LLVM 4.0 [19], with -O3 option. Clang can generate LLVM-
IR (Intermediate Representation) which is independent of any
specific architecture. Then, data-flow-graph (DFG) mapped to
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Fig. 8: DFG of DCT kernel

Fig. 9: Application mapping of DCT kernel for VPCMA2

the PE array is obtained from the LLVM-IR. The application
mapping is optimized by using a mapping method based on
the genetic algorithm [11]. Fig. 8 is an extracted DFG of
DCT kernel, and an optimized mapping for the VPCMA2
is shown in Fig. 9. Strings and numbers in the circles of
Fig. 8 respectively denote operation types and constant values.
Others mean input data or output data. Blue rectangles of
Fig. 9 indicate PEs. Pink diagram and green rectangle in the
PE respectively denote ALU and SE. Purple bar means an
activated pipeline register. Therefore, this mapping makes 5-
stage pipeline.

Fig. 10 shows comparison of execution time for each task
in both architectures. In this evaluation, we assume two types
of data transfer by the host processor. One is single-read/write,
and the other is block-read/write. The single-read/write takes
two cycles each of which is respectively for address and
for data whereas the block-read/write transfers sequential 16-
words data in seventy cycles (likewise, one is for address and

Fig. 10: Execution time for each application

others are for data).
1) RGB2YCC: In case of VPCMA, the DFG of RGB2YCC

cannot be mapped because of limitation in the constant reg-
isters. Then, it is divided into three sub-DFGs: i)RGB-to-Y,
ii) RGB-to-Cb, and iii) RGB-to-Cr, and they are executed
in turn. On the other hand, PE array of the VPCMA2 can



accommodate the whole of DFG so that it performs the
computation without reconfiguration. Although configuration
data of the VPCMA2 are larger than that of VPCMA as
explained in sectionIV-C, the reduction of reconfiguration
count results in x1.31 speed-up.

2) DCT: Similar to the RGB2YCC, the DFG of DCT
(Fig. 8) have to be divided for the VPCMA. In this case,
the DFG is partitioned into two by Kernighan–Lin algorithm
to minimize intermediate results. The second DFG needs the
same input data as the first one and also the intermediate result
produced by the first one. Some words in the data memory
are preserved for the intermediate result every 8-word input
data because input data to the VPCMA’s PE array must be
consecutive. Therefore, using the single-write is faster than the
block-write, and takes 64×2 = 128 cycles to transfer 64 words
(one block). On the contrary, VPCMA2 can perform 8-point
DCT without the partitioning. Hence, data transfer time and
configuration time are reduced. Consequently, x1.47 speed-up
was achieved.

3) Quantize: Unlike other two kernels, DFG of Quantize
needs two arrays of input data: first is the DCT coefficient
and second is a quantize table. The quantize table is com-
monly used for each block. Once it is transferred to the data
memory, the VPCMA2 can reuse it by using the enhanced
data manipulator. In case of the VPCMA, both arrays have
to be transferred every time as described in sectionIII-A. It
causes longer data transfer time than the VPCMA2. However,
the VPCMA2 needs to change offset values of the transfer
table in several iterations. The time to modify them is included
in the computation time of VPCMA2. The micro-controller
undertakes the transfer table modification through the extended
data bus. Therefore, slight increase of the computation time is
observed. As a result, the VPCMA2 executes the kernel x1.30
faster than the VPCMA. Nevertheless, the more blocks are
used, the more reduction of execution time is achieved thanks
to the reuse of the quantize table.

V. CONCLUSION

This work focuses on SF-CGRAs with a task-level re-
configuration. Although these SF-CGRAs usually have some
limitations to reduce the hardware overheads, it causes ineffi-
ciency to execute complex tasks because of less mappability
of application. This work has introduced a relaxed constraint
SF-CGRA named VPCMA2. As the evaluation result, it can
achieve on average x1.35 speed-up with less than 17% power
and less than 10% area overhead compared to the original
VPCMA.
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