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Abstract—A building block computing system with inductive
coupling Through Chip Interface (TCI) consists of 3-D chip
stack, each of which is small dedicated chips. By changing the
combination of stacked chips, various types of systems can be
built. A MIPS R3000 compatible processor GeyserTT, a neural
network accelerator SNACC and the shared memory for building
the twin-tower of chips SMTT have been developed with a
Renesas 65nm low leakage CMOS process. They provide the
TCI IP (Intellectual Property), and an escalator network is built
just by stacking them. This paper shows each chip evaluation
results and performance estimation of stacking them with the
RTL simulator. The performance of the single-tower and twin-
tower configuration is estimated by RTL simulation when a part
of Alexnet is implemented. The evaluation results showed that
the single-tower configuration with GeyserTT+SNACC achieved
about twice performance as the case with GeyserTT. Also,
experimental results using each of the single real chip showed
that all of them work at least 50MHz with extremely low power
consumption. The twin-tower configuration achieved about 2x
of the single-tower, that is about 6x of GeyserTT. The power
consumption was about 276mW for the single-tower and 496mW
for the twin-tower.

I. INTRODUCTION

The increasing requirements for IT devices; various func-

tions, high performance, and low energy, make it difficult to

be satisfied with a single universal SoC (System-On-a-Chip).

However, increasing NRE (Non-Recurrent Engineering) cost

also makes it difficult to develop various types of SoCs for

each application. An approach using SiP (System in Package)

technologies is hopeful because various types of systems

can be built from combinations of dedicated chips; proces-

sors, memory modules and accelerators. Wireless inductive

coupling Through-chip Interface (TCI)[1] is a flexible SiP

technology which enables three-dimensionally chip stacking

with much smaller cost than TSV (Through Silicon Via).

Our research project aims to establish techniques for build-

ing a large system by combining multiple chips with the

TCI like LEGO blocks.[2]. We call them a building block

computing system. So far, we have developed an intellectual

property (IP) of TCI and embedded into some test processor

(or memory accelerator) chips: a MIPS R3000 compatible

processor GeyserTT, CNN(Convolutional Neural Network)

accelerator SNACC[3], a coarse-grained reconfigurable pro-

Fig. 1: 3D NoC using TCI

cessor CC-SOTB2[4], a non-SQL database accelerator KVS

chip[5], and a shared memory chip SMTT[6].

As a preliminary evaluation, in this paper, we focus on three

chips: GeyserTT, SNACC, and SMTT. First, we will show each

real chip evaluation, and based on the results, a simulation

study is done for implementing CNN application on a chip

stack with their combination in order to demonstrate scalability

of the building block computing system.

The rest of the paper is organized as follows. First, a

building computing system is introduced, and some of the

chips used in our systems in Section II. Then, the design of

SMTT and the architecture, a twin-tower system with SMTT

are shown in Section III. Section IV presents execution time

evaluation and results about one of CNN applications. Finally,

we conclude in Section V.

II. BUILDING BLOCK COMPUTING SYSTEMS

Building block computing systems enable to construct a

scalable 3D stacked VLSIs by combining various types of

chips: CPU, accelerators, and memory modules. Inductive

coupling TCI is a key technology for inter-chip communication

in this system.

A. Inductive Wireless Through Chip Interface

TCI is equipped with square coils implemented by general

metal layers for building a data communication link. As shown
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in Fig. 1, the transmitter coils are placed just above receivers’

ones, and data are transferred between them through the

magnetic field. Here, Tx is a transmission channel, and Rx

is a receiver channel. A TCI link needs two inductors, one

for a clock signal and the other for the data. The transferred

data is synchronized with a high speed clock signal (1-8GHz)

generated by an internal VCO.

TCI has the following advantages. First, the inductor con-

sists of common wires in the CMOS process technology

without the particular process technology, unlike the TSV.

Also, ESD (Electro Static Discharge) protection device is

unnecessary, since TCI is electrically contact-less. Moreover, a

data transfer rate of more than 8Gbps is possible with power

less than 10mW and low bit-error rate (BER < 10−12)[7].

Thus, data correction code is not required.

Although the TCI requires a large footprint of the coil,

digital circuits can be located inside it. Only the metal layers

used for the inductor is actually unavailable. We need to

make each chip thin for increasing transfer efficiency so that

the strength of the magnetic field depends on the distance

between the transceiver and the receiver. Now, we make the

chip thickness 40μm to 80μm in order to reduce the size of

the coil. In this work, low power LSIs are stacked with the

TCI so that heat dissipation does not matter much.

B. IP (Intellectual Property) of TCI

We developed IPs (Intellectual Properties) on Renesas 65nm

SOTB process supported by VDEC. TCI IP consists of coils,

transmitter, receiver, and SERDES (Serializer/De-serializer).

As shown in Fig. 2, the coils for the data and clock signals

are realized by duplex winding for its transceiver and receiver,

which allows to switch the communication direction of the link

within a few clock cycles. The internal VCO’s frequency is

designed to be 2.5GHz. Hence, 35-bit data can be transferred

at 50MHz of the operational frequency. In other words, this

IP can be treated as a simple 35-bit uni-directional registered

channel. The diameter of each coil is 240μm × 240μm to

build a link between the chip with 80μm thickness. The size

of the entire IP is 510μm × 410.8μm. We also developed the

link layer and the router layer on the physical layer, and an

escalator network can be formed just by stacking chips like

Fig. 1 [8]. It is important to mention that the link direction of

each the TCI IP have to be fixed to one direction to form the

escalator network.

We developed three chips implemented with the TCI IP. All

of them uses Renesas 65nm SOTB process, and designed with

the same design environment described in Table I.

C. GeyserTT: a host chip

GeyserTT (Geyser for Twin Tower) is an embedded CPU

for host processor of the stacked chip. As shown in Fig. 3,

it is composed of three TCI IPs, Geyser CPU core, DMAC,

and External Bus Controller. Geyser core is a MIPS R3000

compatible CPU with 8KB two-way set associative cache for

instruction and data. It also has an integrated TLB with 16-

entry. An embedded operating system TOPPERS[9] is working

Fig. 2: The layout of TCI IP

TABLE I: Spec. of family chips

GeyserTT MIPS R3000 host processor
SNACC Neural Network Accelerator
SMTT Shared Memory for Twin Tower
Process Renesas 65nm DLSOTB V3

CMOS 7 Metal
Area 3mm × 6mm (GeyserTT, SNACC)

6mm × 6mm (SMTT)
Chip Thickness 80μm
Target Freq. 50MHz (GyserTT, SNACC)

100MHz (SMTT)
TCI IP 35bit/50MHz
CAD Synopsys Design Compiler 2016.03-SP4

Synopsys IC Compiler 2016.03-SP4

on it. It transfers data between data cache and local memory

of other stacked chips logically mapped onto the same address

space through the TCI IPs. The embedded DMAC manages

block data transfer between a data cache block and the memory

of stacked chips. Since GeyserTT is located at the top of the

chip stack, it has the TCI IPs only for the down direction.

As shown in Fig. 4, GeyserTT has three down direction TCI

IPs so that three types of chip stacking can be constructed.

However, this paper employs only the simple 3D stacking.

GeyserTT also manages I/O of the chip stack.

D. SNACC: a neural network accelerator

SNACC (Scalable Neural Acceleration Cores with Cubic

integration)[3] is an accelerator chip for CNN accelerations.

It consists of four SIMD cores, implemented its original

instruction set and local memory designed for CNN. The

instruction width is 16-bits, and 16 general purpose registers

are provided. Fig. 5 shows the schematic diagram of the

local memory configuration of the SNACC. Each core has

five memory modules, INST, DATA, RBUF, LUT, and WBUF,

for instruction codes, input data, weight data, a lookup table,
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Fig. 3: The overview of GeyserTT

Fig. 4: The layout of GeyserTT

and output data respectively. DATA and WBUF are double-

buffered so that the data transfer and processing can be

overlapped. Each core including four local memories has an

independent address space except WBUF. The address space of

WBUF is shared with four cores. In this way, the computation

result for each core can be shared.

The instruction set of the SNACC core consists of R-type

(register-register) and I-type (register immediate) instructions.

However, unlike the standard 32-bit RISC instruction set ar-

chitecture, only two operands are specified. One of the biggest

features of SNACC is SIMD instructions which perform mad

(multiply add) instruction and madlp (multiply add with loop)

instruction. Fig. 6 shows the SIMD unit for the mad instruc-

tion. The SIMD unit can handle fixed-point arithmetic four

16-bits data or eight 8-bits data. Each multiplier unit receives

two input data from the DATA and RBUF memory, and then,

these products are summed by an adder unit. The Max unit

calculates the maximum value from all the inputs. Output data

from the adder unit and the max unit is chosen by a multiplexer

and is stored in the register r13. In addition, an activation

function defined by the lookup table is applied to output data

from the adder, and the result is stored in the register r11.

The madlp instruction iterates this mad instruction a specified

number of times. For control the SIMD instructions, each core

Fig. 5: The overview of SNACC with local memory modules

Fig. 6: SIMD unit for product-sum operation

provides eight 8-bits control registers, and four 32-bits SIMD

registers.

Fig. 7 shows the layout of SNACC. It uses 36 small memory

IPs for various types of memory modules. The four cores are

implemented in four rectangle squares in the chip. Note that,

SNACC has 4 of the TCI IPs for the up/down link of the

escalator network.

E. SMTT (Shared Memory for Twin Tower)

SMTT is a shared memory chip for building block comput-

ing systems with TCI. SMTT has 32KB × 4 SRAM modules,

and they are divided into eight banks, each of which can be

accessed independently. The most important property of the

SMTT is allowing the twin tower chip stacking structure.
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Fig. 7: The layout of SNACC

Two different chip stacks can be built on the SMTT chip

as shown in Fig. 8. The memory on the SMTT is shared with

chips in both towers. Thus, the SMTT behaves as a hub chip of

two towers. The top of each tower is GeyserTT, and the bottom

of them is SMTT in any case. We can insert any accelerators

including SNACC between the SMTT and GeyserTT.

The address of each tower chip is mapped into the address

space of GeyserTT as illustrated in Fig. 9. All chips in

the same tower can access memory modules on the SMTT

assigned into the same address space of the memory map,

although the address spaces of each tower are independent.

Since the memory on the SMTT is 8-way interleaved, chips in

both towers can access them simultaneously if access conflicts

do not occur. An arbiter is provided for the exclusive access

control from both chip stacks.

Chip IDs are assigned to the stacked chips according to

the stacking order, and GeyserTT identifies the chips by using

the IDs. The lower 22-bit of the address are local addresses of

each stacking chip, and upper 8-bit indicates GeyserTT virtual

address space identifier. A host CPU GeyserTT can access the

chips of own tower by just loading and storing the assigned

address. A DMA transfer between accelerators of the same

tower is available. Accelerators in the different towers share

the data through the SMTT.

An atomic operation Fetch&Dec is usually employed for

synchronization among multiple processors with a shared

variable. The SMTT has 32 synchronous registers and, they

are mapped to the same address in both towers. When a chip

reads the synchronous register, then its value is decremented

atomically whereas writing to it is executed normally. If the

result is zero, it is never decremented anymore. In this way,

it is easy to implement a counting semaphore and barrier

synchronization with the synchronous registers.

Fig. 10 shows the layout of SMTT. Unlike GeyserTT and

SNACC, it is implemented on 6mm × 6mm chip die. We used

32KB single port SRAM IP as each memory bank of SMTT,

for forming in 256KB memory in total. On the top right and

lower left on this chip, there are two TCI IPs, and we can form

two chip towers on it. Controllers and synchronous registers

other than IP of SRAM and TCI are widely spreading over

the whole chip. Also, Fig. 11 shows the photograph of chip

Fig. 8: Overview of twin tower system using SMTT

f

Fig. 9: Address map of the twin tower system

stacking with the SMTT and the GeyserTT.

III. REAL CHIP EVALUATION

First of all, we examined the operation of each chip, and

confirmed that all of them work well. The chip photo of

SNACC-SMTT is shown in Fig. 12. Before building three-

chip stack GeyserTT+SNACC+SMTT, two-chip stacks were

developed and tested. GeyserTT+SNACC stack is available,

while SNACC+SMTT is now under testing.

Here, we show the real chip evaluation results of each chip,

and estimate the power consumption of three-chip stack from

the result. The performance is estimated with RTL simulation

study.

A. Operational Frequency

Renesas SOTB 65nm LSTP process focuses on leakage

reduction, and the operational frequency is not so high with

0.75V standard power supply voltage (Vdd). Fig. 13 shows the

power consumption versus operational frequency. A simple

memory check program is executed on GeyserTT, a simple

computational kernel is executed with a core of SNACC, and

in the case of SMTT, just writing and reading specific data

is iteratively executed. Although Vdd is set to be 0.75V, the
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forward body bias (VBN) is used to enhance the performance

as shown in later. The maximum operational frequency with

0.75V Vdd is 52MHz for GeyserTT, 60MHz for SNACC and

130MHz for SMTT with the forward body bias. Each chip

except the SMTT, a simple memory chip was designed to

work with 50MHz, the 35-bit transfer rate of TCI. Thus, the

achieved operational frequency is reasonable considering the

complexity of each chip.

B. Power Consumption of each chip

One of the benefits of the SOTB (Silicon on Thin BOX)

process is high controllability of body biasing. There are a lot

of studies to make the use of body biasing for the optimization

of power consumption[10]. However, recent LSTP process

shifts to reducing leakage power by increasing the threshold of

each transistor. Even with the zero bias, which gives the same

voltage as the GND (VBN=0) to NMOS and Vdd (VBP=Vdd)

to PMOS, the leakage current is quite small. Fig. 14 shows

the leakage current versus the body bias to NMOS (VBN).

Here, we used the balanced bias, that is (VBP = VDD-

VBN), so only values of VBN are shown. It is apparent

that the leakage current is well suppressed even with the

strong forward biasing. Note that the leakage of SMTT largely

increases, since it has relatively large SRAM modules. To

generate the body bias voltages, we can employ an on-chip

body bias generator, which requires only a few micro-watt of

power overhead [11], [12], [13]. However, in this evaluation,

they are supplied by off-chip stable power sources.

According to Fig. 13, using the forward biasing is effi-

cient to boost the performance without increasing the power

consumption rather than increasing Vdd. GeyserTT consumes

around 35mW at 50MHz (target frequency of this design)

while SNACC needs only around 3.5mW at the same fre-

quency. Therefore, the power consumption of GeyserTT is

about 10 times as that of SNACC. Here, SNACC only uses a

core, and when four cores are used, it will become about 4

times. Nevertheless, the power consumption is still much lower

than that if GeyserTT. SMTT, a shared memory consumes

Fig. 10: SMTT chip layout

Fig. 11: Chips photograph of stacking chips with TCI IP

Fig. 12: The chip stack of SNACC+SMTT

smaller power than the other two chips. For instance, in case of

50MHz, SMTT can work with only 2mW power consumption.

It is shown that when the three-chip stack is used, the total

power consumption becomes only about 40mW.

Fig. 13: Power Consumption versus Operational Frequency
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Fig. 14: Leakage Current versus Forward Body Bias VBN

TABLE II: Power for the TCI (per IP)

Design Measured
Trans.Volt.(V) 1.2 1.7-2.9

Trans.Power (mW) 19.32 38.9(Max)
Receiv.Volt.(V) 1.2 1.2-1.7
Receiver (mW) 17.0 20.1(Max)

C. Power Consumption of TCI

Table II shows the power consumption of a TCI IP.

Note that it includes everything around an IP; transceivers,

receivers, and SERDESs for the clock and data links. Through

the evaluation, it did not work with the designed power

supply voltage (1.2V), and worked with much higher volt-

age; 1.7V-2.9V depending on the location of the IP. It is

hypothesized that resistance on the power grid for TCI IP

might degrade the power voltage. This problem can be fixed

in the next chip implementation by increasing I/O pad for

the power supply, refining the power grid and improving

the layout of IP core itself. Fig. 15 shows a breakdown of

the power consumption. As GeyserTT+SNACC+SMTT chip

stack uses 8 IPs, the dominant factor of the power consump-

tion is apparently TCI. It occupies about 85% of the total

power consumption 276mW. The twin-tower configuration

with (GeyserTT+SNACC)×2+SMTT consumes about 490mW

in total.

IV. SIMULATION STUDY

Simulation tools used in this evaluation are summarized in

Table III. All parameters in the simulation are based on the

real chip implementation. Here, we evaluated the execution

TABLE III: Simulation tools

Logic simulation Cadence NC-Verilog
10.20-s131

Operation clock frequency 50MHz
Power simulation Synopsys Prime Time

2012.12-SP3

Fig. 15: Power breakdown of the GeyserTT+SNACC+SMTT

chipstack

Fig. 16: The architectures of AlexNet

time of a CNN application in several building block systems

which consist of GeyserTT, SNACC, and SMTT.

A. Target Application

The CNN adopted here is a type of feedforward neural

network mainly for image recognition. A feedforward neural

network connects between all to all nodes in general, on the

other hand, a CNN connects only locally node depending on

a filter called kernel to process more efficiently.

Here, the famous AlexNet[14], a winner of the Image Net

2012[15] was implemented as a target application. Although

it is now old-fashioned, it is sufficiently general and used in

many studies. Fig. 16 illustrates the architectures of AlexNet.

AlexNet consists of five convolutional layers (CONV), three

pooling layers (POOL), and three fully-connected layers (FC).

It can classify images of 227× 227 pixels into a thousand of

groups.
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In this evaluation, we implement the last two fully-

connected layers (FC7 and FC8) as a benchmark. FC layers

take charge of the final classification of the values extracted

from the convolution layer and the pooling layer. In general,

comparing with computation capacity, memory bandwidth is

the bottleneck for FC layers. On the other hand, convolution

layer suffers less from that bottleneck. The proposed system

with TCI brings about flexibility of chip stacking whereas it

limits the memory bandwidth due to the same design of TCI

IP for all chips. Thus, we choose the FC layers to demon-

strate scalability of the building block computing system.

Applications are written in C program, and compiled with

MIPS cross-compiler except for program code for SNACC

core. The FC layers is executed with fixed-point operation

because GeyserTT and SNACC does not support floating-

point instructions. Therefore, the pre-trained parameters are

truncated to fixed-point numbers.

The calculation in the FC layer is performed according to

the following equation.

a[i] =
∑

j

w[i, j]x[j] + b[i] (1)

Table IV lists the parameter of the FC7.

TABLE IV: Benchmark parameter

layer input output kernel bias
FC7 4096 4096 (4096, 4096) 4096
FC8 4096 1000 (1000, 4096) 1000

Each node has weight (w[i, j]) and bias (b[i]) values be-

tween all input and output values, and this weight and bias

values are different depending on the learning data.

B. Target Hardware

We tried four system configurations: a single Gey-

serTT, a single-tower: GeyserTT+SNACC, a twin-tower

(GeyserTT)×2+SMTT, and a twin-tower with SNACC:

(GeyserTT+SNACC)×2+SMTT.

First, we simulated a simple GeyserTT (one core) and

GeyserTT (two cores) with SMTT. GeyserTT fetches the input

data, weight data, and bias data for the application from

an external memory and executes the FC layers. In case

of the twin-tower configuration, processing for each layer

is divided into two and executed in parallel. After the FC7

layer is calculated, both of GeyserTT share the results for the

next FC8 by storing them in the different memory bank of

SMTT. Next, we added SNACC chips for CNN acceleration

between GeyserTT and SMTT. All four cores in the SNACC

are utilized. In this system, GeyserTT transfers the required

data and controls the SNACC chip. Program in SNACC cores

handles same 16-bit fixed-point number as that of GeyserTT.

The FC layers are accelerated with “madlp” instruction. The

execution time of the systems using SNACC includes data

transfer time between GeyserTT and SNACC. Data transfer

and processing are overlapped on a double-buffering basis, For

the twin-tower, SNACC (four cores)×2 and GeyserTT×2 are

Fig. 17: Simulated execution times of four systems

connected by SMTT as a bridge, and the results in the WBUF

are transferred to SMTT memory. Thereby, SNACC chips in

both tower can share the results like the GeyserTT×2+SMTT

configuration.

C. Evaluation Results

The simulation results for each system are shown in Fig. 17.

Whereas execution cycles of GeyserTT (one core) is about

3.81×108 cycles, GeyserTT (two cores) with SMTT takes

only 1.91×108 cycles. Although the twin-tower system needs

some cycles to synchronize both cores, it causes slight time

overhead compared to computation and data transfer time.

As a result, 50.0 % time reduction is achieved. The SNACC

single-tower without SMTT takes 1.24×108 cycles. The result

demonstrates that the SIMD instruction improves execution

times compared to GeyserTT (one core) system. Besides, the

SNACC chips (eight cores) in the twin-tower system consume

only 6.34×107 cycles. The size of weight data in FC layers is

too large for the local memory in SNACC so that GeyserTT

have to replace the weight data over and over. The transfer time

of input data (1KB) is about 20000 cycles while calculation

using the 1KB data takes approximately 1400cycles. Hence,

even though the processing and data transfer are overlapped,

the transfer time occupies a large proportion of the execution

cycles, and it was impossible to shorten the execution time

anymore. Consequently, the twin-tower system with SNACC

executes the FC layers 1.95× faster than the single-tower

system including SNACC.

V. CONCLUSIONS

Here, a MIPS R3000 compatible processor GeyserTT, a

neural network accelerator SNACC and a shared memory for

building the twin-tower of chips SMTT have been developed

with a Renesas 65nm CMOS SOTB process. The real chip

evaluation result showed that all of them work at least 50MHz

with extremely low power consumption by using forward body

biasing. The performance of the single-tower and the twin-

tower configuration is estimated by RTL simulation when

a part of Alexnet is implemented. The evaluation results

showed that the single-tower configuration with GeyserTT and
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SNACC achieved about twice performance as the case with a

single GeyserTT. The twin-tower configuration also achieved

around 2× of the single-tower, that is about 6× of the single

GeyserTT. The power consumption was about 276mW for the

single-tower and 496mW for the twin-tower.

The current problems are mostly around the TCI IP. Some

combination of chips are now under testing. Also, the voltage

level must be much higher (2.9V) than the designed one

(1.2V). We will try other combinations of family chips: KVS

and CCSOTB2, and establish the way to use IP stably.
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