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Abstract—Coarse-Grained reconfigurable architecture
(CGRA) is a promising platform for HPC systems in the
post-Moore’s era. A single-source programming model is
essential for practical heterogeneous computing. However, we
do not have a canonical programming model and a frontend
compiler for it. Existing versatile CGRAs, in respect to their
execution model, computational capability, and system structure,
magnify the difficulty of orchestrating the compiler techniques.
It consequently forces designers of the CGRAs to develop the
compiler from scratch, working only for their architectures. Such
an approach is outdated, given other successful accelerators
like GPU and FPGAs. This paper presents a new CGRA
compiler framework in order to reduce development efforts
of CGRA applications. OpenMP annotated codes are fed into
the proposed compiler, as recent OpenMP support device
offloading to the accelerators. This property improves the
reusability of the existing source code for HPC workloads. The
design of the compiler is inspired by LLVM, which is the most
famous compiler framework so that the frontend is built to be
architecture-independent. In this work, we demonstrate that
the proposed compiler can handle different types of CGRAs
without changing the source codes. In addition, we discuss the
effect of architecture-independent optimization algorithms. We
also provide an open-source implementation of the compiler
framework at https://github.com/hal-lab-u-tokyo/CGRAOmp.

I. INTRODUCTION

The performance of computers has been successfully im-
proved over several decades. Most computer architects, how-
ever, are facing the challenge of keeping up with the per-
formance scaling since the Moore’s Law is ending. In order
to overcome the challenge, they typically use accelerators
instead of general-purpose processors for compute-intensive
tasks [1]. GPUs are the most successful accelerators as they
are employed for High Performance Computing (HPC) system
today, including many TOP500 supercomputers [2]. Although
a recent GPU offers tens to hundreds of TFLOPS performance,
it suffers from significant power consumption in the order of
a few hundred watts.

Another type of HPC system is emerging, which contains
Field Programmable Gate Arrays (FPGAs) as computational
resources [3]. FPGAs yield lower power dissipation than
GPUs. FPGAs also achieve comparable or better performance
than GPUs for some workloads so that the FPGAs demonstrate
much higher energy-efficiency [4]. Yet FPGAs potentially
have considerable timing-, area-, and power-overhead due to
fine-grained, i.e., bit-level, reconfigurability. In addition, it

poses a complicated and time-consuming compilation process
to generate the configuration data. The Electronic Design
Automation (EDA) tools can optimize the hardware design on
the reconfigurable fabric to a limited extent and consequently
need programmers to tune their source code manually in order
to make it suitable for FPGAs.

Coarse-Grained Reconfigurable architecture (CGRA) is an
alternative hardware platform to mitigate the above issues of
FPGAs and promising for future HPC systems. It generally
has an array of Processing Units (PE) and interconnection
networks between PEs. Each PE is composed of a simple
Arithmetic Logic Unit (ALU), multiplexers, and small local
storage such as register file or FIFO buffer. The multiplexer
selects an operand fed into the ALU from incoming data sent
by neighbor PEs. The PE array can form a specialized pipeline
for the target computation kernel by optimizing the mapped
instruction into ALUs and the interconnection. In this respect,
the reconfigurability of CGRAs is counted as a word-level, i.e.,
bit-width of ALU like 32-bit and 64-bit. It is much coarser
than FPGAs. Therefore, CGRAs save the overheads for the
reconfiguration and bring near-ASIC energy efficiency [5].
Furthermore, the coarser granularity alleviates the complexity
of the compilation process, and thus the compiler affords to
apply more aggressive optimization.

The compilation flow for CGRAs is usually divided into
two steps: 1) dataflow extraction from application codes and 2)
mapping the dataflow into the PE array (Place-and-Route). The
extracted dataflow is represented as Data Flow Graph (DFG) or
Control Data Flow Graph (CDFG), and it is passed to the next
step. CGRAs have a wide variety of properties regarding exe-
cution style, supported instructions, and capability of handling
control flow, including conditionals and nested loop structure.
Compiler designers definitely have to implement the backend
mapping algorithm to suit their target CGRAs. Nevertheless,
they are forced to develop the frontend to generate the DFGs
as well because feasible DFGs are different depending on
the target CGRAs even for the same application kernel. As
a result, existing CGRA compilers have been developed based
on their own programming model or are specialized for a
certain CGRA, even though there should exist a lot of common
tasks in the compilation flow. Moreover, it is impossible for
us to compare different types of CGRAs directly and compare
CGRAs with other accelerators such as GPUs.
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(a) RIKEN-CGRA: a case of spatially configured CGRA (b) A classical CGRA with time-multiplexing of configuration

Fig. 1: Example CGRAs with different reconfiguration styles

This paper proposes a new compiler framework independent
of a specific CGRA and targeted for any CGRAs. The design
of the compiler is inspired by a concept of LLVM [6],
which is one of the most popular compiler infrastructures.
It helps us make an appropriate design choice by a fair
comparison between different styles of CGRAs. In addition,
the proposed compiler uses OpenMP offloading, which is a
standard heterogeneous programming model. Thanks to such
a standard model, only limited efforts are required to reuse
existing source codes for HPC workloads since many of the
source codes are written in either C/C++ or Fortran, which
is supported in OpenMP. Moreover, several HPC benchmarks
are already implemented with OpenMP [7]. To best our
knowledge, this work is a first attempt for CGRAs to use
OpenMP for the programming model and Fortran as a frontend
language in addtion to C language.

II. BACKGROUND

A. Coarse-Grained Reconfigurable Architectures

An application runtime is usually dominated by loops
so that accelerators executing the loops faster and more
energy-efficiently than CPUs are indispensable. CGRAs are
promissing accelerators which can exploit both data-level and
instruction-level parallelisms in the loops.

CGRAs are categorized into two groups based on their
reconfiguration policy: 1) Spatially configured CGRAs and 2)
ones with time-multiplexing configuration. The former type
of CGRAs forms a fully pipelined dataflow on the recon-
figurable fabric and keeps the configuration during runtime.
It has advantages in terms of computational throughput and
reconfiguration overheads, whereas it often struggles with the
exhaustion of hardware resources. If the target dataflow de-
mands more resources than those the CGRA physically owns,
the compiler partitions the dataflow prior to the mapping [23]–
[25]. In the early era when CGRAs emerged, such a style was
commonly adopted as in XPP [26], and many research efforts
have been focussing on it again recently [27]–[30]. Figure 1(a)
describes an example of the spatially configured CGRA called
RIKEN CGRA [28]. The leftmost and the rightmost columns
of tiles are Load Store (LS) units responsible for memory
access. The LS tile contains an address generation logic to

provide regular memory access. Each PE tile inside the array
consists of an ALU and a few FIFO to synchronize operand
data. When required operands arrive, an operation of the ALU
automatically fires.

CGRAs in the latter category execute the loop kernel
while changing the configuration repeatedly. They generally
handle several iterations simultaneously in a software pipeline
manner to improve the thoughtput. Figure 1(b) shows a
classical CGRA with a time-multiplexing configuration, such
as ADRES [31], which is a representative CGRA, and many
research has adopted a similar architecture especially on the
topic of mapping method such as [32]. Those CGRAs can
share and switch the interconnection links dynamically, unlike
the statically configured CGRAs. Even though such a recon-
figuration is more power-hungry, it enhances the possibility
to route the dependent PEs with limited physical routing
resources. In addition, the flexible reconfiguration offers a
variety of design options to support complicated control flow.

Partial predication [33] is the most common technique
for CGRAs to handle conditional statements inside the loop,
i.e., if-else part. It transforms the control dependencies into
corresponding data dependencies, replacing the control flow
with comparators and phi nodes to select values from the taken
path. Although this technique is available for both classes of
CGRAs, it brings about a large DFG, especially for nested
conditionals. Therefore, some sophisticated techniques have
been proposed to handle the conditionals statements efficiently
[14], [34]–[36].

B. Existing frontend compilers for CGRAs

As explained in Section I, the CGRA compilers fulfill two
tasks to transform the application code written in some high-
level languages into the configuration of the CGRAs. The first
task is to extract the compute-intensive kernel from the code
and generate a DFG compatible with the target CGRA. It
is regarded as a frontend of the compilation flow. Then, the
extracted DFG is mapped to the PE array, the configuration file
corresponding to the mapping result is generated at the next
stage. This process strongly depends on the target CGRA and
is considered as a backend.

The backend, especially for the mapping method, is a
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TABLE I: Comparison of the existing CGRA compilers from the viewpoint of the frontend characteristics

Reference Kernel code
Assumed execution model Freedom of DFG

Targets
Spatially configured Time multiplexed PE instructions transformation

PipeRench Compiler [8] C-like DSL
√ × Fixed - PipeRench

Musketeer [9] C × √
Fixed - Renesas STP

XPP-VC [10] C
√ × Fixed - PACT XPP

SambaFlow [11] PyTorch, etc
√ × Fixed - SambaNova

DRESC [12] C × √
Fixed - ADRES

CCF [13] Annotated C × √
LLVM-IR - ADRES-like

Das et al. [14] C × √1 - Implemented IPA
Kim et al. [15] OpenCL × √

Fixed - SRP[16]

CGRA-ME [17] C
√ √

A subset of LLVM IR - Any 2

OpenCGRA [18]
Python DSL × √ Any

- Any 2
C/C++ LLVM-IR

Bonzini et al. [19] C
√ × Composition Clustering EGRA

DSAGEN [20] Annotated C
√ × Composition Diverse Any of SA 3

CHiPReP [21] Annotated C
√ �4 LLVM-IR 5 Clustering HiPReP

DFGenTool [22] C × √
LLVM-IR - -

This work OpenMP
√ √

Any Customizable Independent
1 The execution model is specialized to handle control flow and is different from the ADRES-like model.
2 Any CGRA, as far as the framework can describe
3 Spatial Accelerator: a superset of spatially configured CGRA
4 The architecture can map more than one instruction into a single PE with time-multiplexing while it differs from ADRES-like CGRAs.
5 Instruction replacement to utilize compound operators by a subgraph matching after DFG generation

hot topic of CGRAs since the quality of mapping has a
considerable impact on the computation throughput and energy
efficiency. Thus, new methods are being investigated every
year [37]–[40]. In contrast to the backend, a programming
methodology for CGRAs has attracted much less attention.
Thus, there exists no canonical programming model and the
frontend compiler, even though such a modern parallel pro-
gramming model as OpenMP, OpenACC, and CUDA should
be utilized for the CGRAs, as claimed in [5]. Nonetheless, the
frontend is essential in the compilation flow for any CGRAs.
As a result, the compiler designer for each CGRA develops a
frontend tightly coupled with the backend and confines it into
its own compilation toolchain.

Table I summarizes the characteristics of the existing CGRA
compilers. Each of them has one or more of the scalability
issues as follows:

• A dedicated programming model
• Constant behavior due to targeting a specific architecture
• Less flexibility to exploit any custom instructions
• No consideration for customizing middle-end optimiza-

tion

Most compilers use ANSI C as the programming launguage.
Some of them are based on their original syntax for kernel
annotation. SambaFlow for SmabaNova [11] is basically tar-
geting machine learning applications. Therefore, it supports
the de facto standard frameworks for machine learning, such
as TensorFlow and PyTorch. OpenCL is a programming model
for heterogeneous computing and has been introduced to
SRP[16]. Yet it seems to have a limitation to applying other
CGRAs.

DFGenTool [22] provides only frontend and is similar to
this work. However, generated DFGs are constant to the
application code even though various CGRAs need different
forms of DFGs. The compilers in the uppermost four rows
in Table I are software tools for the commercial products of
CGRAs. Therefore, it is no wonder that they support only their
CGRAs. Nevertheless, most others also focus on a specific

type of CGRA. It means the behavior of the frontend is always
definite. DSAGEN [20] is a remarkable framework for design
space exploration of Spatial Accelerator, which is a superset
of spatially configured CGRAs. It changes the generated DFG
depending on the target accelerator and verifies whether the
application code is compatible. On the other hand, it cannot
be utilized for the time-multiplexed CGRAs.

Most compilers consider only primary operators like arith-
metic binary operators, logical ones, and comparators since
the instruction set architecture of their targeting CGRA has
only those instructions. Some of CGRAs have a PE containing
a cluster of ALUs like EGRA [19] or supporting compound
instruction like multiplied-accumulate (ACC) [21]. In this
case, their compilers try to find a sub-graph with pattern
matching techniques to aggregate several primary instructions
into a single compound one. Such a graph transformation is
integrated into the compilation flow. However, this approach
cannot leverage rich mathematical functions such as sin and
exp.

Another type of graph transformation in advance of the
mapping is also proper. For example, a high fanout node
is eliminated by inserting a recomputation node like [14],
[32]. The graph transformations are regarded as a middle-end
process of the compilation, whereas there is no framework
allowing a plugin to customize the transformations. It requires
much effort to implement a novel algorithm for middle-end
optimization.

III. OPENMP COMPILER FOR CGRAS

To address the scalability issues of the existing CGRA com-
pilers, this study proposes a flexible compilation framework
based on the OpenMP programming model. The offloading
capability had been supported in OpenMP 4.0, especially for
supporting GPUs. In addition, OpenMP supports C/C++ and
Fortran. Such standardized model and multi-language support
encourages the reuse of existing codes and fair comparison
between different accelerators.

Code 1 is a snippet from jacobi-1d-imper based on Poly-
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Fig. 2: Overview of the compilation flow for CGRA OpenMP

Code 1: Code snippet for OpenMP offloading

1 #pragma omp target data map(to:A[0:N]) map(from:B[0:N])
2 {
3 #pragma omp target parallel for private(i)
4 for (i = 1; i < PB N − 1; i++)
5 B[i] = 0.33333f * (A[i−1] + A[i] + A[i + 1]);
6 }

Bench/ACC benchmark suite [41]. For the OpenMP offload-
ing, target directive specifies the kernel executed on acceler-
ators. The map clause gives the compiler a hint to manage
data transfer between the host and the CGRA. For example,
a map type to copys data to the CGRA at the beginning of
execution but does not write the data back to the host at the
end of the computation.

A. Overview of the compilation

The proposed framework is implemented as an extension
of LLVM [6]. LLVM consists of serval subprojects including
C/C++ frontend Clang, Fortran frontend, and OpenMP. There-
fore, the framework can be built with minimal effort.

Figure 2 describes an overview of the proposed compilation
flow. It is automatically processed by a compiler driver we
have developed. The frontends compile application codes writ-
ten either in C or Fortran into LLVM Intermediate Representa-
tion (IR). The LLVM-IR has both codes executed by the host
CPU and ones to be offloaded. The LLVM toolchain contains
clang-offload-bundler, which is a utility tool for heterogeneous
single-source programming and separates code objects for
the host CPU and accelerators. Thereby, the compiler driver
extracts the kernels executed on a CGRA from the bundled
codes.

LLVM provides valuable and powerful analysis and op-
timization functionalities as Passes. The extracted codes of
the CGRA kernel are optimized by the built-in passes before-
hand CGRA-centric process. For example, codes optimization
available regardless of the target hardware, such as dead code
elimination, constant folding, and redundancy elimination, are
applied.

The well-optimized LLVM-IR is fed into CGRAOmpPass.
The behavior of the pass is changed depending on the target
CGRA model, as explained later. The pass verifies whether a
kernel code can be executed, extracts the verified kernels as
DFGs, and replaces the kernel codes with appropriate runtime
functions for reconfiguration, data transfer, and synchroniza-
tion. However, the runtime part is currently under developing.
The exported DFGs are fed into any backend mapper for the

Fig. 3: Sequence of the CGRAOmpPass

target CGRA. Finally, the configuration file for each kernel
is created. It is statically liked into the execution binary or is
loaded dynamically at runtime.

The remaining LLVM-IR after the replacement contains
only the control part so that it is merged into the host LLVM-
IR by clang-offload-bundler again. The framework is designed
to provide a template for runtime libraries. Therefore, the
CGRA designers have only to implement a library derived
from the template to suit their systems. In this way, it is
expected to be used even for some standalone CGRAs, which
have no host processor.

B. Details of CGRAOmpPass

The CGRAOmpPass is composed of several internal passes,
as shown in Fig. 3. A CGRA model described in the JSON
file is loaded and a model instance is created when the pass is
invocated. It tells characterization of the target CGRA to the
internal passes. Each internal pass is abstracted, and actually
executed pass is selected according to the specified model
with the object oriented design similar to LLVM. Thus, it
required little effort to extend these passes to support a new
type of CGRA model. As mentioned previously, part of the
compilation related to the runtime function is left for future
work.

1) Code Verification

VerificationPass verifies whether the candidates of CGRA
kernels are accepted for the target CGRA. The verification
categories are as follows:

• All of the needed instructions supported
• Containing only allowed conditional parts
• Loop nested structure canonicalized
• Having only allowed inter-loop dependencies
• Memory access pattern

Some CGRA models do not have any constraints on certain
items. In this case, these items are skipped. For example, the
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time-multiplexed CGRAs usually does not have limitations
about memory access pattern, whereas as for the spatially
configured one, the available memory access patterns are
sometimes restricted.

If a kernel does not satisfy any of these constraints, it is
ignored for the offloaded kernel to CGRAs. In case of the
code violations, the pass tells users the reason as a diagnostic
report. It is helpful for design space exploration to analyze
which capabilities are essential in a target application region.

2) DFG extraction

Each verified kernel is given to DFGExtractionPass, and a
corresponding DFG is generated. Each DFG is finally exported
in DOT format, which is a widely used graph description
language and makes it easy to connect other back-end tools
as in [13], [17]. Some attributes of the nodes and the edges
are customizable by the command line option. An internal
representation of the DFG is derived from LLVM built-in
classes. Therefore, several utilities for graphs implemented
in LLVM, such as breadth-first search, are also available.
In order to avoid losing generality, edges attributed to loop-
carried dependencies have the distance between the dependent
iterations as additional information.

3) DFG Optimization

Users can apply a sequence of optimizations for each DFG
before exporting. Currently, a tree height reduction algorithm
[42] is included as a built-in optimization. It tries to make the
graph more balanced as far as possible, exploiting commutativ-
ity and associativity of operators. The tree height reduction is
important optimization and is commonly used for VLSI design
and high-level synthesis of hardware description language
since it can reduce the critical path length and expose more
instruction-level parallelism [43]. The floating point operations
are non-associative generally because of rounding error. Thus,
the transformation works for floating-point operation only at
the expense of precision with options such as -fast-math.

Moreover, the pass accepts user implemented plugins and
applys them into the DFGs with the command line option.
Therefore, it is easy to add another graph transformation
introduced in Section II-B and also target-specific graph
optimization.

IV. MODEL DESCRIPTION

As the previous section explains, the CGRA model for the
compilation is defined as a JSON file. It should include enough
information for the code verification. This work considers
two categories: 1) decoupled and 2) simple time-multiplexed.
The first one is a subclass of the spatially configured CGRA.
For CGRAs in this category, the memory access part and
computational part must be separated as in [20]. CGRAs in
the second class are the ADRES-like CGRA.

Code 2 gives an example of the model description, which is
a compatible model with RIKEN CGRA [44]. The field with
“address generator” describes what types of memory access
are allowed for the memory access. This example means
the CGRA can handle affine access with up to three loop
induction variables, i.e., accessed address must be expressed
by C0X0 + C1X1 + C2X2. It is a dedicated field for the

Code 2: An example of model description

1 {
2 "category": "decoupled",
3 "address_generator": {
4 "control": "affine",
5 "max_nested_level": 3
6 },
7 "conditional" : {
8 "allowed": false
9 },

10 "inter-loop-dependency": {
11 "allowed": false
12 },
13 "generic_instructions": [
14 "add", "sub", "mul", "udiv",

↪→ "sdiv", "and", "or",
↪→ "xor", "fadd", "fsub",
↪→ "fmul", "fdiv" ],

15 "custom_instructions": ["fexp",
↪→ "fsin", "fcos", "fpow"],

16 "instruction_map": [
17 {"inst": "xor", "rhs": {

↪→ "ConstantInt" : -1},
↪→ "map": "not"},

18 {"inst": "xor", "map": "xor"}
19 ]
20 }

Code 3: Application code exploiting a custom instruction

1 CGRAOMP CUSTOM INST float FMA(
2 float x, float y, float z) {
3 return x * y + z;
4 }
5 void kernel(...)
6 ....
7 #pragma omp target parallel for private(i)
8 for (i = 1; i < N − 1; i++) {
9 Z[i] = FMA(A, X[i], Y[i])

10 }
11 ...

decoupled class. The analyzed memory access information is
also exported together with the DFGs and is generally packed
into the configuration data.

The following two fields are for the capabilities of handling
the control dependencies. An application code with conditional
statements or inter-loop dependencies cannot be compiled for
the CGRA expressed by this example. This setting changes
the behavior of the verification and the form of DFG to be
created.

The remaining fields are used to describe the instruction set
architecture of the target CGRA. The “generic instruction”
indicates which the primary operator defined in LLVM-
IR are available for the CGRA. The “custom instruction”
enumerates custom instructions which the PE can execute
and cannot be expressed in LLVM-IR. In the application
source code, the same name function with an attribute
CGRAOMP CUSTOM INST must be declared as shown in
Code 3. If the CGRA model does not support fused multiply-
add FMA instruction like Code 2, the compiler automatically
performs inlining as far as the function can be inlined.

The last field makes a conversion table from LLVM-IR to
the CGRA ISA. It remaps an LLVM instruction with additional
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TABLE II: Comparison of the generated DFGs

Benchmark
Decoupled CGRA Simple-time-multiplexed

NV NE NL NV NE NL

convolution-2d 27 (17,9,1) 26 2 45 54 (52, 2) 1
convolution-3d 32 (20,11,1) 31 3 58 69 (67, 2) 1
jacobi-1d-imper 7 (3,3,1) 6 1 13 16 (14, 2) 1
jacobi-2d-imper 11 (5,5,1) 10 2 14 17 (15, 2) 1

seidel-2d Violate 32 41 (37, 4) 1
fft-radix2 18 (10,4,4) 20 1 31 49 (46, 3) 1
fft-radix3 40 (28,6,6) 50 1 69 96 (93, 3) 1
fft-radix4 50 (34,8,8) 64 1 76 126 (123, 3) 1
fft-radix5 64 (44,10,10) 78 1 96 156 (153, 3) 1

NV : the number of nodes, NE : the number of edges, and NL: loop nested level
extracted as the DFGs

conditions to the CGRA instruction. In this example, xor
instructions whose right-hand side of the operands is “-1” are
treated as not instruction for the CGRA, whereas the other xor
instructions are still mapped to xor ones as for the CGRA.
If there is no entry for a generic instruction supported in
the CGRA, remapping does not occur. Thereby, the compiler
provides the flexibility to express the instructions of CGRAs.

V. EXPERIMENTS

This section demonstrates that the proposed compiler can
alter its behavior of the code verification and DFG generation
based on the target CGRA model without changing the source
code. Moreover, we analyze the effect of the pre-optimization
before the mapping process.

A. Setup

The proposed compiler was implemented as an extension
of LLVM/Clang 12.0.1. Flang version 20211221 [45] was em-
ployed for Fortran frontend. In order to evaluate the compiler,
we selected five benchmarks: convolution-2d, convolution-3d,
jacobi-1d-imper, jacobi-2d-imper, and seidel-2d from Poly-
Bench/ACC [41]. This benchmark suite has several flavors
of implementations, such as OpenMP and OpenACC. We
used the OpenMP version and just modified the directive for
offloading. In addition, we prepared Stockham Fast Fourier
Transform with radix-2, 3, 4, and 5 as a representative scien-
tific application.

Considering the case where the CGRA supports the FMA
instruction like Code 3, these FFT codes are written to use
as many FMA instructions as possible. Please note that the
function call in the loop kernel is inlined when the CGRA
does not support the dedicated instruction. This evaluation
targets two CGRA models: 1) the same model as Code 2 and
2) simple-time-multiplexed allowing the loop-carried depen-
dencies without any conditional statement support. Thus, the
second class of CGRAs cannot control the nested loop directly.
In this case, only the innermost loop is extracted as a kernel.

B. Verification results and generated DFGs

We compare the DFGs for both models. Table II describes
the statistics regarding the generated DFGs. Despite the same
source code, each has a different structure, as emphasized
through the paper. As for the decoupled CGRA, size for
computational nodes, memory load, and memory store are
respectively shown inside the parenthesis in addition to the
total number of the nodes. The table also explains how
many edges due to loop-carried dependencies are included in

TABLE III: DFG size reduction by enabling custom instruction
for FFT kernels

Radix
Normalized sizes of
nodes edges

2 0.90 0.90
3 0.80 0.92
4 0.78 0.91
5 0.82 0.85

DFGs for the simple-time-multiplexed CGRA. The left side is
data dependencies within an iteration, while the right one is
attributed to the loop-carried dependencies.

In addition to the C implementation of jacobi-1d-imper,
we manually translated it to Fortran with OpenMP pragmas.
Then, we validated that our compiler can extract the same
DFGs based on the Fortran code. As explained in Fig. 2, the
code was firstly compiled to LLVM-IR with Flang, while the
remaining process is the same as the case of C codes. This
evaluation result suggests Fortran is a new option for CGRA
programming. Unfortunately, Flang does not fully support the
syntaxes of target directive yet. That is why our compiler
driver cannot automate the compilation flow completely for
Fortran.

At runtime, the decoupled CGRA does not have to calculate
the memory address on the computational resources, e.g., ALU
in the PEs. Instead, the configuration for the dedicated memory
access controller, such as the LS unit of RIKEN CGRA, is
generated at compile time. Thus, the DFGs are smaller than
that for the time-multiplexed one. Furthermore, it can execute
the nested loops, as far as they are perfectly nested and the
memory access patterns are compatible with the controller.
However, the studied model does not permit any inter-loop
dependencies so that it loses an opportunity to accelerate
seidel-2d.

On the contrary, the simple-time-multiplexed CGRA accepts
such a dependency, and thus seidel-2d is available. Thanks
to the proposed compiler, we can analyze and discuss the
tradeoffs between different architectures without changing the
benchmarks. It helps to justify design choices in the early
design stages. For example, if we target applications which
has more complex memory access, conditional statements, and
imperfect loop nest than the studied ones, another type of
CGRA should be considered.

We also evaluate the DFG sizes when enabling the custom
instructions. For a case study, FMA instruction is added to the
“custom instructions” field in the model description, and then
FFT codes are compiled with the modified model. Table III
shows how much the DFGs size is reduced. The custom
instruction contributes to around 10-20% of the size reduction
in nodes and edges. Practically, these effects have to be
assessed considering hardware overhead to support such an
instruction.

C. Discussion on the optimization effects

Nextly, we discuss necessary optimization, focussing on
the decoupled CGRAs. Loop unrolling is a possible option
in order to exploit the reconfigurable fabric of the spatially
configured CGRAs. LLVM has already implemented the loop
unrolling optimization. Thus, we tested the loop unrolling, giv-
ing the compiler a hint of unrolling count. Nonetheless, we ob-
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(a) DFG without loop unrolling (b) Unrolled DFG with unrolling factor 2

(c) DFG after applying tree height reduction to the DFG (b)

Fig. 4: Generated DFGs with different optimization settings

served built-in optimization sequence such as ”-O2” in LLVM
brings the unrolled loop kernels while collapsing the perfectly
nested loop structure during the optimization. We thoroughly
surveyed an appropriate sequence of the optimization, and the
following sequence for opt tool brings expected results in
our case: –indvars -loop-unroll -simplifycfg -loop-simplify
-loop-instsimplify -loop-rotate -mem2reg -constmerge -
simplifycfg -indvars -polly-canonicalize. Figure 4(a) and
Figure 4(b) show the obtained DFGs with and without loop
unrolling for convolution-2d. They are built for the decoupled
CGRAs. As explained in Section IV, the loop control is
handled by the memory access unit and the configuration for
the loop control is omitted in those figures.

The kernel is convolution for 2D images with a 3x3 kernel
and stride 1. Six-pixel data of the images between two consec-
utive iterations are identical. Hence, the number of memory
load instructions in the unrolled DFG is reduced to twelve
thanks to the pre-optimization.

In addition to the pre-optimization for LLVM-IR, we eval-
uate the tree height reduction algorithm, which is a built-
in optimization for DFGs in our compiler, as explained in
Section III. The optimized DFG is illustrated in Figure 4(c).
The critical path length is reduced to 6 from 10, and the tree
structure is well-balanced. It strongly depends on the target
architecture which of DFGs is better. In addition, it is also
different what kind of graph transformation is needed. The
proposed compiler provides an easy way to evaluate such an
optimization since the optimization sequence can be easily
changed, and it offers the interface for users to implement
their algorithm as plugins.

VI. CONCLUSION

In this paper, we have proposed a compiler for CGRAs
based on the OpenMP programming model. It encourages us
to reuse existing application codes written in C or Fortran.
Furthermore, the proposed compiler is designed to be indepen-
dent of a specific architecture, considering there exist different
CGRAs in terms of their reconfiguration policy, capabilities
of handling control flow, and supported instructions. Thanks
to the scalable features, it enables us to compare different
CGRA models without changing application source code. In
this work, simple two CGRA models has been used. For future
work, we plan to add futher CGRA models and develop the
OpenMP runtime for CGRAs. In addition, we should discuss
other syntaxes of OpenMP needed for CGRAs.
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