
SLMLET: A RISC-V Processor SoC with
Tightly-Coupled Area-Efficient eFPGA Blocks

Takuya Kojima∗, Yosuke Yanai†, Hayate Okuhara‡, Hideharu Amano†, Morihiro Kuga§, and Masahiro Iida§
∗Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan

†Department of Information and Computer Science, Keio University, Yokohama, Japan
‡Department of Electrical and Computer Engineering, National University of Singapore, Singapore

§Department of Computer Science and Electrical Engineering, Kumamoto University, Kumamoto, Japan

Abstract—SLMLET is a low-power System-on-a-Chip (SoC),
which is a promising device for edge computing. It consists of
a RISC-V core and area-saving embedded Field-programmable
gate arrays (eFPGA) blocks called Scalable Logic Module (SLM).
This paper presents a fabricated SLMLET chip and a developed
HW/SW co-design flow. The experimental results demonstrate
that the RISC-V core can operate at up to 300MHz, and a
hardware design on the SLM blocks can operate at up to
100MHz. By offloading compute-intensive processes to dedicated
circuits implemented in the SLM blocks, it is possible to achieve
up to 77 % energy reduction compared to software processing
on the RISC-V core and other commercial microcontrollers.

I. INTRODUCTION

With the advancement of IoT (Internet of Things), there
is a growing need for edge devices, which are traditionally
only equipped with simple microcontrollers, to perform cer-
tain calculations such as cryptography and anonymization as
well as their basic functions. Equipping hardware accelerators
satisfies the requirements for performance and power con-
sumption; however, the flexibility of IoT devices is limited
because the applications capable of performance enhancement
are restricted, leading to a lack of versatility across various
purposes.

SoC type FPGA chips that integrate CPU and FPGA into
a single chip are advantageous to such IoT devices, as they
can provide predictable computation performance, specialized
hardware for target workloads, and high energy efficiency [1].
Major FPGA vendors have commercialized excellent SoC-type
FPGA chips like Zynq [2]. However, they are overkill for
simple IoT applications and sometimes consume too much
energy.

This paper proposes an energy-efficient scalable SoC-type
FPGA called SLMLET. The design strategy of SLMLET
is as follows: 1) It uses an original eFPGA called SLM
[3] that requires smaller configuration data than that for
conventional look-up table-based FPGAs, as in [4]–[6]. 2)
Multiple configuration data sets corresponding to multiple
applications are stored in their local memory in the compressed
form and exchanged application-by-application. This function
contributes to the efficient use of a limited area of the chip. 3)
SLMLET has a HyperBus interface to connect to HyperRAM,
a low-power DRAM, and other SLMLT chips to extend the
performance with parallel processing. SLMLET also supports
real hardware-context migration; that is, it is possible to extract
internal registers from one SLM, transfer them to another
chip’s SLM, and restart processing. In this way, SLMLET can
easily configure multi-chip systems. All of the above functions

(k-1)-
LUT

PN

PN

PN

2bit

2bit

2bit

2(k-1)bit

1bit

Ik-1

I1

I0

out

Fig. 1: SLM logic cell structure

are controlled by a RISC-V processor core tightly connected
with SLM-based eFPGA cores.

When it comes to IoT application development with the
FPGAs, efficient software/hardware co-design is essential in
order to adapt to rapidly changing cyber-physical systems.
This paper also proposes a software development kit (SDK)
and software library for the SLMLET SoC built with RISC-
V ecosystems. The SDK provides application developers with
an API similar to CUDA and OpenCL, which are successful
programming models for accelerators. Thereby, the developers
easily write a program utilizing hardware on the FPGA core.

As a case study, we implement a couple of workloads on
the SLMLET SoC and several conventional microcontrollers
widely used in the IoT domain. The experiments demonstrate
that the SLMLET outperforms the conventional SoCs for
applications well-suited to the FPGA computation in terms
of energy efficiency and performance.

II. BACKGROUND AND RELATED WORK

A. SLM-based FPGA architecture

FPGAs comprise programmable logic cells and interconnec-
tion elements as their essential elements, arranged in a regular
array structure [7]. In addition, modern FPGAs also have
digital signal processing (DSP) blocks and memory blocks to
increase their computational capability and storage capacity
for intermediate data.

The logic cells in the FPGA are typically implemented
with look-up tables (LUTs) and flip-flops (FFs). A k-input
LUT can be programmed as a k-input truth table for a logic
function. With a larger input size k, a single LUT can express
more complex logic. It consequently reduces the total number
of logic cells in the FPGA. However, it also exponentially
increases the configuration memory size since it needs 2k bits.

To address the issue, SLM has been proposed [3]. Its
logic cell is optimized based on the insight that similar logic
functions frequently appear in typical hardware designs. Figure

1 shows the structure of the SLM logic cell. Instead of k-LUT,
the logic cell consists of a (k−1)-LUT, multiple programmable
NANDs, and an inverter. The targeted k-input logic function
is decomposed into two partial functions by applying Shannon
expansion. The configuration memory of the LUT is filled with
the truth table of one of the partial functions. Then, FPGA
CAD tries to find an interconversion to make the other partial
function NPN equivalent to the first one. The programmable
NANDs around the LUT realize the interconversion. Although
every function is amenable to such conversion, a report in [3]
shows that conversion is possible for 90% of the functions in
typical benchmarks.

An IP generator tool is available to customize an SLM-based
FPGA architecture [3]. Similar to existing eFPGA frameworks
like [8], users can change generated IP parameters, such as the
number of basic logic elements (BLEs) in a logic block (LB)
and the number of tiles in the FPGA. In addition, there are
SLM-specific parameters, such as the number of inputs of the
SLM and the number of programmable NANDs.

B. Prior work on eFPGA SoC
As introduced in Sec. I, several prior works have proposed

SoCs with embedded FPGA (eFPGA) cores and processor
cores. Arnold [5] has a RISC-V core and around 6K 4-input
LUTs in the eFPGA. It is fabricated as a 3x3 mm2 die with
a 22 nm FDSOI process. Moreover, body biassing, which
is a leakage power reduction technique, is available to save
unnecessary power consumption when sleeping. The manually
designed hard macro contributes to the high LUT density and
high performance.

On the contrary, Renzini, et al. [6] have presented a soft
macro-based eFPGA SoC with a RISC-V core. For power
control applications, the SoC is implemented with a 90 nm
process for power ICs. Due to the matured process and the
LUT-based soft macro, it has a limited programmable logic,
only about 50 6-LUTs.

The latest work, CIFER [4], has many cores of two types of
RISC-V processors and an eFPGA with over 6K 6-LUTs. One
type of the RISC-V core is a Linux-capable 64-bit processor
and is responsible for system control. The SoC integrates
four of such cores. The other type is a 32-bit processor for
computational tasks. Those cores form a cluster of six, and the
SoC comprises three such clusters, meaning a total of 18 cores
are packed into the SoC. Despite the soft macro-based eFPGA,
it archives a comparable LUT density to the hard macro-
based eFPGA in [5] thanks to the 12 nm FinFET process. In
addition, its operating frequency exceeds 1GHz. Nonetheless,
when considering the affordable products for edge devices, the
question remains whether such a rich SoC is suitable for edge
devices.

III. PROPOSED SLMLET SOC

A. System Overview
This section describes the proposed SLMLET SoC. Figure

2a explains the system overview of SLMLET.

B. RISC-V Processor Core
The RISC-V processor is a 3-stage pipeline implementation

of the RV32I instruction set. The core has dedicated memory
blocks, 64KB each, for instruction and data. When the system

TABLE I: SLM block IP specification

Parameter Value
BLE structure 5-input SLM
of BLEs per LB 4
of LB tiles 224
of DSP tiles 8
Total SLM cells 896
Total FFs 1,024 bits
Switch topology Wilton-type

boots, the program binary is loaded into the instruction mem-
ory and the data memory via the Serial Peripheral Interface
(SPI). The SLMLET can connected to up to four SPI slaves,
including the boot loader.

C. SLM-based eFPGA Blocks

Two FPGA blocks composed of the SLM logic cells are
integrated into the SLMLET. The current SoC design employs
an identical IP for both blocks. Table I summarizes the
specification of the SLM block IP. In addition to the SLM
logic cells, the block has DSP blocks to implement unsigned
8x8-bit multipliers.

IO blocks are located on all four sides of the SLM block.
The IO blocks on the left side of one SLM block are connected
to those on the right side of the other SLM block. Therefore,
it is possible to use both blocks as a single large block.
The remaining IO blocks are connected to other modules in
the SoC, as shown in Fig. 2b. The connection between the
SLM block and the RISC-V core gives a memory-mapped
interface and is utilized for control and status data transfer.
Two banks of shared memory are also connected to the SLM
block through the interconnect. While a bank of memory is
connected to an SLM block, other modules, including the
opposite side of the SLM block, cannot access the bank. In
addition, Direct Memory Access (DMA) controllers offer the
capability of streaming data transfer between the SLM block
and the HyperBus, as explained later.

Each SLM block has its configuration controller so that both
blocks can be reconfigured in parallel. The configuration data
(i.e., bitstream of the FPGA) sets are stored in the shared
memory and transferred to an SLM block. This action is
triggered by RISC-V software, while the configuration itself
is controlled by the dedicated controller.

To save memory usage and reduce configuration data trans-
fer from the external memory to the shared memory, the
configuration controller supports on-the-fly decompression of
the bitstream data compressed with a simple compression
method called Tag Less Compression (TLC) [9]. The total
configuration data is already reduced to about 2/3 of the
common FPGAs with 5-LUTs [10]. Furthermore, the TLC can
compress the data with a 10% to 300% reduction depending
on the appearance of continuous ’0’s.

D. Peripheral Interfaces

Assuming that the SLMLET is used as an edge device,
the SPI is sometimes insufficient to handle data to/from the
network. In addition, data-intensive applications, which require
larger memory space than on-chip memory capacity, are also
expected to be emerging IoT applications. Therefore, the SLM-
LET has three channels of HyperBus interfaces. HyperBus is
developed by Cypress Semiconductor and is in accordance
with JEDEC eXpanded Serial Peripheral Interface (xSPI)

RISC-V
Core

Data
Memory
(64KB)

Instruction
Memory
(64KB) Boot

Controller

SLM
(2 blocks)

DMAC

Hyper Bus
Switch

Shared
Memory

128KB x 2bank

SPI
Tx/Rx

Memory
Inter-

connection

Hyperbus PHY
3 ports

Up
 to

 4
 S

PI
 sl

av
es

De
bu

g
si

gn
al

s

DRAM

(a) Block diagram of SLMLET SoC

SLM
Block

Config.
Ctrl

DMAC

RISC-V
Core

Shared SRAM
 Interconnect

Banked Shared SRAM

To/From
Hyperbus

16
8

32

control

(b) Interface around SLM blocks

S

P-well

D

Gate

screening layer

Vb,N

VT setting
layer

Low doped
layer

(c) Transistor structure of DDC
process

SLM
Block 2

SRAM

SLM
Block 1

RISC-V&Others

4.2mm

4.
2m

m

(d) Fabricated
chip

Fig. 2: An overview of the SLMLET SoC fabricated with the DDC 55nm process

standard. Despite the reduced number of pins, it achieves high-
speed data transfer, and commercially available HyperRAM
and HyperFlash can be connected to the interface. Notably,
HyperRAM offers lower power consumption compared to
conventional DDR memory, making it suitable for edge de-
vices. Additionally, the HyperBus ports can be connected to
other SLMLET chips to extend the performance with parallel
processing.

E. Fabricated Chip
The SLMLET SoC was fabricated with the USCJ DDC

55nm process [11]. Its transistor structure is illustrated in
Fig. 2c. The P-well is formed with three different layers. The
low doped layer under the gate oxide contributes to small
threshold voltage variation by reducing the random dopant
fluctuation. The Vt setting layer enables multiple thresh-
old voltages. These features are important for SoC designs
composed of blocks with different operating requirements.
The screening layer is a highly doped layer that terminates
the depletion layer. Thanks to its high body coefficient of
240mV/V, the body bias control, which changes the bias
voltage applied to the well contact in the figure, can adjust
the threshold voltage and reduce leakage power. It is possible
to balance the trade-off between leakage power and computa-
tional performance.

The RTL design of the SLMLET was synthesized with
a low-voltage threshold (LVT) standard cell library using
Synopsys Design Compiler. The layout was obtained with
Cadence Innovus. The photo of the fabricated chip is shown in
Fig. 2d. The chip size is 4.2 mm square. The two rectangular
at the bottom are the SLM blocks.

The LB tile is laid out in a 106.80 um square area, and
each tile is placed in a 16.20 um pitch. As Table I explains,
the LB tile has four 5-input SLM logic cells. Therefore, the
density of the SLM logic cells is about 264 SLM/mm2. In the
best-case scenario, the 5-input SLM is equivalent to a 6-input
LUT. Considering the difference in the fabrication process, the
density is comparable to 1541 LUT/mm2 in the state-of-the-art
implementations with 12 nm FinFET [4].

IV. HW/SW CO-DESIGN FLOW AND LIBRARY

This section explains the proposed HW/SW co-design flow
for SLMLET applications and the software library. Figure 3
describes the flow of generating the executable binary. The
flow is divided into two parts: the hardware development flow
for the SLM blocks using FPGA CAD [3] and the software
compilation flow based on an existing RISC-V toolchain. In

回路設
計
(RTL)

Sy
nt

he
sis

(Y
os
ys
)

SLMLET
Library

Te
ch

no
lo

gy
M

ap
pi

ng
(A
BC

)

Pa
ck

in
g

&
Pl

ac
em

en
t

(V
PR

)

Ro
ut

in
g

(E
as
yR
ou
te
r)

回路設
計
(RTL)
RTL

Designs
FPGA

Bitstream
Files

H
ea

de
r I

ns
er

t

Bu
nd

le

Co
m
pi
le

（
G
CC
)

FPGA
Object

File

Li
nk

(L
D

)

C
Code
Files

Custom
Linker
Script

ELF
Binary

HW Part Design Flow with FPGA CAD

unsigned int* bitstream;
bitstram = loadBitstream(0, MEM_BANK0);
configurationSLMAsync(SLM_BLOCK0,
bitstream);
synchronizeConfigurationSLM(SLM_BLOCK0);
resetSLM(SLM_BLOCK0);
startSLM(SLM_BLOCK0);

Code Snippet for FPGA Configuration

Object
Files

SW Part Compiler Flow

Executable

Header
added

Bitstreams

Co
m

pr
es

s

Fig. 3: Hardware (SLM) and software (RISC-V) co-design
flow

the hardware development flow, widely used open-source EDA
tools are employed. The given RTL design is synthesized
with Yosys, technology-mapped with ABC, and clustered
and placed with VPR. Lastly, routing is performed with
EasyRouter, which is developed for SLM-based eFPGA [12].
The generated bitstream contains the configuration data for
a single SLM block and is a fixed length of 14616 bytes
if uncompressed. The bitstream file is converted to a binary
format, adding a header to tell the SLMLET library whether
the bitstream is compressed or not and the length of the
bitstream. Then, multiple bitstreams (if present) are bundled
into a single object file to enable a user program to switch the
configuration of the SLM blocks at runtime.

Currently, C language is the only supported language for
the software part on the RISC-V core. The source code is
compiled with GCC, and the SLMLET library and the bundled
bitstream file are linked to generate the executable binary.
Porting and enabling lightweight languages widely used in
embedded systems, such as MicroPython and mruby, is crucial
to boost IoT application development. Furthermore, supporting
modern languages like Rust, which excel in memory safety and
concurrency, is also important to exploit heterogeneous paral-
lel processing platforms comprising FPGAs and processors.
Such language support is a future work of this research.

A. SMLET Library
The developed library includes software primitives, such

as standard I/O for printf and scanf, SPI communication,
and HyperRAM data management. In addition, it provides an
API to control the SLM blocks and data transfer between
the RISC-V core and the SLM blocks without the need
for detailed knowledge of the SLMLET SoC. Primary API
functions are loadBitstream to load bitstream data onto
the shared memory, configurationSLM to reconfigure the

SLMLET Chip
HyperRAM

Hyperbus Ports

Fig. 4: Evaluation board for SLMLET
with PYNQ-Z2

Fig. 5: Leakage power consumption with
body bias control Fig. 6: Power consumption of SLMLET

SLM block, resetSLM to reset the SLM block, startSLM
to activate the SLM block, and writeSLM and readSLM to
access the memory-mapped area of the SLM block.

In addition to configurationSLM, a non-blocking func-
tion configurationSLMAsync is also available. In the
case of the non-blocking function, the processor core can
continue other tasks during the reconfiguration.

Data transfer through the interface directly connected to
the RISC-V core requires different controls depending on the
data type. For example, when transferring 32-bit int data,
a total of four data transfers are required because of the 8-
bit interface. The writeSLM and readSLM functions are,
therefore, type-generic macros, and the compiler determines
the number of data transfers according to the type of the
trasferred data variable.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the operating frequency, power
consumption, and the effect of body bias control through
experiments using the developed SoC. Additionally, we com-
pare performance and energy efficiency against commercially
available devices used as edge devices, employing several
applications implemented with the proposed development flow.

A. Evaluation board and environment
We developed an evaluation board shown in Fig. 4. Its

pin header is designated to connect TUL PYNQ-Z2 board
featuring Xilinx Zynq-7000. To test the SLMLET SoC ef-
ficiently, we developed a Python library, PySLMLET, which
is a driver software to control the SLMLET SoC and run
on the PYNQ-Z2 board. In addition, dedicated hardware was
implemented in the Programmable Logic (PL) part of the
PYNQ-Z2 board to communicate the SLMLET SoC. The de-
veloped ecosystem can interface with SCPI/VISA-compatible
stabilized DC power supplies, allowing for fully automated
tests under various conditions.

B. Body bias control for leakage power reduction
First, we measured the leakage power consumption of the

SLMLET SoC while changing the supply voltage (VDD) and
body bias voltages. The VDD was set from 0.3 V to 0.9 V
in 0.1 V increments, and the body bias voltage to p-well of
nMOS transistors, VPW, was set from -0.6 V to +0.3 V in
0.1 V increments. The same level of body bias voltage was
applied to n-well of pMOS transistors. The measured leakage
power consumption is shown in Fig. 5.

Depending on the body bias voltage and supply voltage, the
leakage power consumption varied from 0.3mW to 402mW.

Off On
Compression

0

2000

4000

6000

8000

El
ap

se
d

Ti
m

e
(u

s)

Sequential
Parallel

Fig. 7: Elapsed time to reconfigure both blocks (50MHz)

In the case of the standard voltage condition (VDD=0.9V,
VPW=0.0V), the leakage power consumption is 72.9mw.
Hence, 99.6% of the leakage power can be saved when
sleeping the SLMLET SoC. For extended battery life, such
a feature is indispensable for edge devices, which are often in
a sleep state. Although the computation performance can be
boosted by applying forward body bias, the evaluation results
suggest that the overhead is not justified. Thus, only reverse
body bias is considered in the following experiments.

C. Functional verification of RISC-V core

The RISC-V core is responsible for the whole system
control of the SLMLET SoC. Thus, the function of the RISC-
V must be verified. For this purpose, we used an official test
suite [13], which is a set of tests to verify whether RISC-
V ISA is correctly implemented. The test results show that
instructions except for half-length memory access instructions
(lh,lhu,sh) are correctly implemented. That defect is attributed
to an incorrect RTL design and has already been fixed.

Then, we study the operating conditions of the RISC-V core
while changing the operating frequency up to 120MHz. The
plot shows the cases using VDD voltages that minimize the
power consumption at each frequency and body bias voltage.
The result indicates a strategic shift around 40MHz. For lower
frequencies than 40MHz, leak power dominates, making it
more power-efficient to increase VDD and apply a strong
reverse bias. On the contrary, for frequencies above 40MHz,
dynamic power is the primary power consumption, suggesting
that a weaker reverse bias (e.g., -0.1V) and a lower VDD
should be used.

D. Reconfiguration Time

Next, we evaluated the time required to reconfigure the
SLM blocks. To measure the time, we employ a bitstream,
which configures four memory-mapped 32-bit registers in an

TABLE II: Comparison of the evaluation results when each operates at the maximum frequency

App. SLMLET(soft) SLMLET ESP32a RP2040b GW1NR-9
sram memcpy fmax 300 MHz 100 MHz n/a n/a n/a

Cycle 28,679 32,994 n/a n/a n/a
Power 428.6 mW 268.5 mW n/a n/a n/a

Latency 95.60 us 329.9 us n/a n/a n/a
Energy 40.98 uJ 88.60 uJ n/a n/a n/a

CRC32 fmax 300 MHz 70 MHz 240 MHz 200 MHz 50 MHz
Cycle 14,117 2,151 n/a n/a n/a
Power 393.3 mW 170.0 mW 312.5 mW 154.8 mW 281.9 mW (comp), 268.3 mW (trans)

Latency 47.05 us 30.73 us 77.58 us 66.59 us 885.7 us
Energy 18.50 uJ 5.22 uJ 24.24 uJ 10.31 uJ 335.0 uJ

AES128 fmax 300 MHz 28 MHz 240 MHz 200 MHz 34 MHz
Cycle 1,865 976 n/a n/a n/a
Power 426.8 mW 158.9 mW 306.0 mW 158.9 mW 618.5 mW (comp), 278.7 mW (trans)

Latency 6.217 us 34.86 us 7.814 us 14.00 us 1333 us
Energy 2.653 uJ 6.518 uJ 2.391 uJ 2.223 uJ 237.9 uJ

a The maximum frequency configurable by the user is 240MHz
b We tested up to 200MHz

0.30 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.32 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.34 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.36 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.38 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.40 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.42 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.44 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.46 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.48 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.50 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.52 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.54 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.56 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.58 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.60 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.62 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.64 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.66 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.68 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.70 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.72 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.74 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.76 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.78 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.80 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

0.82 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

0.84 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

0.86 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

0.88 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

0.90 Pass Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate

0.92 Pass Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate

0.94 Pass Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate

0.96 Pass Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate

0.98 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate

1.00 Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate

10 20 30 40 50 60 70 80 90 100 110 120

VD
D

(V
)

Frequency (MHz)

(a) Block 1 (VPW = 0.0 V)

0.30 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.32 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.34 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.36 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.38 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.40 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.42 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.44 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.46 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.48 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.50 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.52 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.54 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.56 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.58 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.60 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.62 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.64 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.66 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.68 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.70 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.72 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.74 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.76 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.78 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.80 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.82 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.84 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.86 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.88 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.90 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.92 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.94 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

0.96 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

0.98 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

1.00 Pass Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate

10 20 30 40 50 60 70 80 90 100 110 120

VD
D

(V
)

Frequency (MHz)

(b) Block 1 (VPW = -0.4 V)
0.30 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.32 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.34 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.36 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.38 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.40 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.42 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.44 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.46 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.48 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.50 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.52 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.54 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.56 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.58 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.60 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.62 Pass Pass Pass Pass Config Error Violate Violate Violate Violate Violate Violate Violate

0.64 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.66 Pass Pass Pass Pass Config Error Violate Violate Violate Violate Violate Violate Violate

0.68 Pass Config Error Pass Pass Pass Config Error Violate Violate Violate Violate Violate Violate

0.70 Config Error Config Error Pass Config Error Pass Pass Violate Violate Violate Violate Violate Violate

0.72 Config Error Pass Config Error Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.74 Config Error Pass Config Error Config Error Pass Config Error Violate Violate Violate Violate Violate Violate

0.76 Pass Config Error Config Error Pass Config Error Config Error Pass Violate Violate Violate Violate Violate

0.78 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate Violate

0.80 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate Violate

0.82 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate

0.84 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate

0.86 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate

0.88 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate

0.90 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate

0.92 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate

0.94 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate

0.96 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate

0.98 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate

1.00 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate

10 20 30 40 50 60 70 80 90 100 110 120
Frequency (MHz)

VD
D

(V
)

(c) Block 2 (VPW = 0.0 V)

0.30 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.32 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.34 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.36 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.38 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.40 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.42 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.44 Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.46 Config Error Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.48 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.50 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.52 Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.54 Pass Config Error Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.56 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.58 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.60 Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.62 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.64 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.66 Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate Violate

0.68 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.70 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.72 Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate Violate

0.74 Pass Pass Pass Pass Config Error Violate Violate Violate Violate Violate Violate Violate

0.76 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.78 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.80 Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate Violate

0.82 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.84 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.86 Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate Violate

0.88 Pass Pass Config Error Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.90 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.92 Pass Pass Pass Pass Pass Pass Pass Violate Violate Violate Violate Violate

0.94 Pass Config Error Pass Config Error Pass Pass Pass Violate Violate Violate Violate Violate

0.96 Pass Config Error Pass Config Error Pass Pass Pass Pass Violate Violate Violate Violate

0.98 Config Error Pass Pass Config Error Pass Config Error Pass Pass Violate Violate Violate Violate

1.00 Config Error Config Error Config Error Config Error Config Error Config Error Config Error Config Error Violate Violate Violate Violate

10 20 30 40 50 60 70 80 90 100 110 120

VD
D

(V
)

Frequency (MHz)

(d) Block 2 (VPW = -0.4 V)

Fig. 8: Operating range of SLM blocks

SLM block. Figure 7 shows the elapsed time to reconfigure
both blocks with and without the TLC when the operating
frequency is 50MHz. The measured time includes the time to
load the bitstream to the shared SRAM and the time to write
the bitstream to the SLM block by the configuration controller.

The LB utilization is 29.3%, and the compressed bitstream
size is 49.8% of the original size. As explained in Section
IV-A, the written bitstream size to the SLM block is fixed re-
gardless of the compression, but the time to load the bitstream
can be reduced. Therefore, the compressed bitstream reduces
the bitstream load time by 24.8% and 33.9% for the sequential
and parallel reconfiguration, respectively. Consequently, com-
bining the compression and parallel reconfiguration reduces
51.5% of the time to reconfigure both blocks when compared
to the uncompressed sequential reconfiguration.

E. Performance of SLM blocks
Figure 8 shows shmoo plots of the operating range of the

SLM blocks with the same bitstream used in the reconstruction
time evaluation. The red area indicates the failure of the
operation, and the green area indicates the success. Block 1
operates as expected, and the operating frequency is 100MHz

TABLE III: FPGA resource usage comparison

SLMLET GW1NR-9
sram memcpy Logic 378 (42.2%) n/a

FF 164 (18.3%) n/a
LB 100 (45.3) % n/a

CRC32 Logic 377 (42.1%) 1981 (22.9%)
FF 131 (14.6%) 911 (13.6%)

LB/CLS 114 (50.8%) 1422 (32.9%)
BSRAM n/a 3 (12.0%)

AES128 Logic 784 (87.5%), 844 (94.2%) 3427 (39.7%)
FF 293 (32.7%), 139 (15.5%) 1337 (20.0%)

LB/CLS 211 (94.2%), 220 (98.2%) 2472 (57.2%)
BSRAM n/a 2 (8.00%)

with zero bias voltage. If -0.4 V of the reverse bias voltage
is applied, the operating frequency decreases to 80MHz while
the leakage power also decreases, as shown in Fig. 5.

On the other hand, block 2 does not operate as expected
when a high supply voltage is applied, even at 10MHz.
Further analysis revealed that the configuration controller does
not correctly reconfigure the block. Therefore, we conducted
experiments under different voltage conditions during recon-
figuration and FPGA operation. The orange area in Fig. 8c
and Fig. 8d indicates that the circuit built in the SLM block
2 correctly operates, but the configuration controller does not
work as expected. These results indicate the operating range of
both blocks is almost the same. The issue of the configuration
controller is still under investigation.

F. Case study as an edge device

Lastly, we evaluated the SLMLET SoC using the following
applications: 1) sram memcpy: 1KB data copy in the shared
SRAM, 2) CRC32: CRC32 calculation from 1KB binary data
(polynomial: 0x04C11DB7), and 3) AES128: 128-bit AES
encryption.

Two versions of each application were implemented: a
hardware version utilizing the SLM blocks and a software
version that runs only on the RISC-V core. The software im-
plementations of CRC32 and AES128 are based on MiBench.
Regarding the AES128, the hardware version uses two SLM
blocks because a single block is not large enough to implement
the entire application.

Except for sram memcpy, we also compared the SLMLET
with two commercially available microcontrollers: Espressif
Systems ESP32 and RP2040 (Raspberry Pi Pico). Both of
them are fabricated with a 40nm process and have a dual-core
processor. Moreover, we compared the SLMLET SoC with a
discrete FPGA, Gowin GW1NR-9, which is mounted on the

About 70us

Fig. 9: Power consumption comparison for CRC32

Tang Nano 9K board. Due to the discrete FPGA, GW1NR-
9 does not have a tightly connected processor, unlike the
SLMLET SoC. Thus, data transfer between a host processor
and GW1NR-9 is performed via UART with an available
maximum baud rate of 921600 bps. The UART module is
also made with its reconfigurable logic using a UART IP.

The results are summarized in Table II. The software
implementations of SLMLET achieve the maximum operating
frequency of 300MHz, regardless of the application, when the
supply voltage is 1.0 V. Even at the standard voltage of 0.9V,
the RISC-V core operates at 280MHz. Because of the 16-bit
width channel between the shared SRAM and the SLM blocks,
the hardware version of sram memcpy cannot outperform the
software version. Due to the limited operating frequency of the
SLM block, it takes three times longer to execute the hardware
version than the software version. However, the RISC-V core
can execute other tasks while the SLM block is copying data.

Regarding AES128, the critical path across two SLM blocks
results in a low operating frequency of 28MHz. Despite
the half of the cycle count, the latency of the hardware
version is longer than the software version because of the
low operating frequency. Likewise, the other microcontrollers
also outperform the hardware version in terms of latency and
energy consumption. However, the hardware version is faster
than the software version when the operating frequency is
around 30MHz. Due to the limited logic resources, the used
hardware version still has the potential for further acceleration.

The hardware version of CRC32 is the most successful
among the three applications. The hardware version reduces
the cycle count by 85% compared to the software version.
Although the maximum operating frequency of the SLM block
is 70MHz, the latency of the hardware version is shorter than
that of the software version. As a result, the hardware version
reduces energy consumption by 70%, 21%, and 50% compared
to the software version of SLMLET, ESP32, and RP2040,
respectively.

Figure 9 shows the power consumption of each device when
executing CRC32. The hardware version always lower power
consumption than the other devices. When comparing the
power consumption with about 70us of latency, the hardware
version, the software version, ESP32, and RP2040 consume
36mW, 159mW, 312mW, and 133mW, respectively. The lowest
power consumption of the hardware version is achieved at
30MHz with a supply voltage of 0.64V and a reverse bias
voltage of -0.3V. The power reduction compared to the soft-

ware version is 77%.
Finally, we compared the SLMLET SoC with GW1NR-9.

Table III gives a detailed comparison of the FPGA resource
usage between SLMLET and GW1NR-9. The power consump-
tion of GW1NR-9 is very different between the computation
and data transfer. That is why the two power consumptions
are reported in Table II. Due to the logic consumption of the
UART, it needs more resources than the SLMLET. Further-
more, the execution time of GW1NR-9 is dominated by the
data transfer through UART, even though the processed 1KB
data transfer time is excluded from the measured time for
CRC32. The dynamic power consumption is not negligible,
even in the standby state, and it consumes about 250mW. As
a result, the energy consumption of GW1NR-9 is one to two
orders of magnitude larger than the SLMLT SoC.

GW1NR-9 is based on 5-LUT FPGA and fabricated with a
55nm process, which is the same feature size as the SLMLET
prototype chip. Thus, the achieved operating frequency is
similar to the hardware version of the SLMLET. However,
the SLMLET has a margin to apply a reverse bias of -0.3V at
50MHz for CRC32, reducing the leakage power to 5mW.

VI. CONCLUSION

This paper presents the SLMLET SoC, which integrates
a RISC-V processor core and SLM-based eFPGA blocks,
and the developed HW/SW co-design flow. The experimental
results demonstrate that the SLMLET can reduce energy
consumption by 77%, offloading compute intensive tasks to
application-specific hardware on the SLM blocks. Moreover,
the tightly coupled RISC-V core and SLM blocks expand
the range of applications that benefit from the hardware
acceleration. For future work, we will investigate methods to
determine the optimal voltage from FPGA CAD timing reports
and other information to improve energy efficiency further.

ACKNOWLEDGMENT
This work was supported by VDEC in collaboration with Cadence Design

Systems, Inc. Ths work was also supported by JST CREST JPMJCR19K1
and JST PRESTO JPMJPR22P5.

REFERENCES
[1] S. Biookaghazadeh, M. Zhao, and F. Ren, “Are FPGAs Suitable for Edge

Computing?” in USENIX Workshop on Hot Topics in Edge Computing (HotEdge
18), 2018.

[2] Xilinx, “Zynq 7000 data sheet:overview,” https://docs.xilinx.com/v/u/en-US/ds190-
Zynq-7000-Overview.

[3] M.Kuga, et.al., “An eFPGA Generation Suite with Customizable Architecture and
IDE,” IEICE Trans. on Fund. of Elect. , Comm. and Comput. Sciences, vol. 106,
no. 3, pp. 560–574, 2023.

[4] Chang, Ting-Jung, et.al., “CIFER: A 12nm, 16mm 2, 22-Core SoC with a 1541
LUT6/mm 2 1.92 MOPS/LUT, Fully Synthesizable, CacheCoherent, Embedded
FPGA,” in 2023 IEEE CICC. IEEE, 2023, pp. 1–2.

[5] e. S.P.Davice, “Arnold: An eFPGA-augmented RISC-V SoC for flexible and low-
power IoT end nodes,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 29, no. 4, pp. 677–690, 2021.

[6] Renzini, Francesco, et.al., “A fully programmable eFPGA-augmented SoC for
smart power applications,” IEEE Trans. on Circuits and Systems I: Regular Papers,
vol. 67, no. 2, pp. 489–501, 2019.

[7] H. Amano, Principles and structures of FPGAs. Springer, 2018.
[8] X. Tang, E. Giacomin, B. Chauviere, A. Alacchi, and P.-E. Gaillardon, “OpenF-

PGA: An open-source framework for agile prototyping customizable FPGAs,”
IEEE Micro, vol. 40, no. 4, pp. 41–48, 2020.

[9] T. Takagi, et.al., “Tag-less compression for FPGA configuration data,” in Proc. of
SASIMI 2022, 2022, pp. 81–82.

[10] M.Amagasaki, et.al, “Slm: A scalable logic module architecture with less configu-
ration memory,” IEICE Trans. on Fund. of Elect. , Comm. and Comput. Sciences,
vol. 99, no. 12, pp. 2500–2506, 2016.

[11] K. Fujita, Y. Torii, M. Hori, J. Oh, L. Shifren, P. Ranade, M. Nakagawa, K. Okabe,
T. Miyake, K. Ohkoshi et al., “Advanced channel engineering achieving aggressive
reduction of V T variation for ultra-low-power applications,” in 2011 International
Electron Devices Meeting. IEEE, 2011, pp. 32–3.

[12] Q. Zhao, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi, “An automatic FPGA
design and implementation framework,” in 23rd FPL. IEEE, 2013, pp. 1–4.

[13] RISC-V Software, “riscv-mini,” https://github.com/riscv-software-src/riscv-tests.

