Compilation and Optimization Techniques for Coarse-Grained Reconfigurable Architectures
Takuya Kojima* T, *Kei1o University, Japan, TRIKEN, Japan

Introduction

CGRA (Coarse-Grained Reconfigurable Architecture) is a promising computation platform thanks to its programmability and high energy efficiency. Instead of bit-level
reconfigurability like FPGAs, CGRAs have a coarser one (i.e., word-level), which mitigates the complexity of the compiler’s task. However, the compilation process for CGRAs,
including optimization, is still challenging since each CGRA targets different applications and needs different optimization policies. In this presentation, we introduce our toolchain

\to compile and optimize CGRA applications and show some case studies targeting two different CGRAs, one for 10T and embedded systems and the other for HPC workloads. Y,

Examples of Coarse-Grained Reconfigurable Architectures (CGRAS)

Cool Mega Array (CMA) Riken High-Performance CGRA (RHP-CGRA)
& PE || PE| ...| PE || PE » Alow power CGRA ACTIPELIPELIPEL | ety i » An architecture template
& I Tor — Toe » PE (Processing Element) | | [agllpellpellrel]| | 71 ® For design space exploration
ko) = _ » Composed of AgLpELPELIPEL- ® Targeting HPC workloads
- ' . f f e
S PE-Array - 1. Smr.\ple. ALU ol pELIPELIPEL > A token-based CGRA
PE||PE| ---| PE || PE 2. SW|t§:h|ng ‘Element AGHPiEHPiEHPiEHP PIEﬂpi iE o ©® FIFO buffers in each PE
5 oe|[pe] - [pe|[pe]| © NoRegisterfile e o e e et (= [lg @ Executing an operation in an ALU
[ T No peed of clock signal et inet el el el ot ol Tag when required operands arrive
§ Data Manipulator ° Stralghthrward data-flow AG«»PiE«»PiE«»PiE«»PtEHPiE«»PiE«»PiE«»AG > AG (Address generator)
L » p-controller i ® Handling data input/output
AG+|PE - PE[~PEPE+-PE - PE[-PE+AG
. IN.Ozaki, 2011] data memory & PE array AR [A. Podobas, 2020] )
o /

Our compilation & optimization toolchain for CGRAs

C Code j‘> f‘> WEelad® O PyTorch :>. > GenMa P >
fund() [A.Ohwada, 2021] DL-based [TKOJIma, 2020]
_ resource estimation || 1 . al
4 GA-based algorithm -
OpenMP CG RAOmp ﬁ Optimization for : Partitioned Optimization for : Mapping to CGRA
# porrz;gma (under dev) € Max. throughput DFGs ® Min wire Ienéth for each DFG
p Data-Flow-Graph (DFG) |['% 21V etiasrds & Min mabping ares
of an annotated kernel € Load balancin . Mapping
D! tod based VM J € Min. consumed energy
mplemented based on - - € Latency balancing, etc.
\ / \ ¥ Paper is under review ) \ y g J
- /
Details of GenMap
Optimization flow based on a genetic algorithm Genetic operations
e oA ~Representing a mapping as chromosomes ~_ Either of them
(App. kernel) — Initialize Selection : : : 2
J mapping population I S — »Not including routing results m - %{, » m
Target FrequencyI—’ . Crossover Mapping .
; Conroing & v I »Two types of genetic ops DB
Architecture 1 MUtitlon GenMapShell . : moving
Definition Evaluation Uodate Ponulat Interactive 1) crossover & 2) mutation SWappIng Ex. of mutation
* Array Size > Wire-Length (Essential) == fpu — Configuration Generator
' ;‘?pci_'ogy Criteria2 = l
+ Pipeline ondition ,
: Criteria n satisfied? Yes Optimized g ((1)’8)
Parameters | No Configuration Data C: EOllg L \
for evaluation o Parent A Gene B  Gene Gene Geng
|| D: (1,1) EA, Eo,g;i EA, Eg,g;i A, (0,0)} {A, (0,00}
. . . . o R _ B, (1, B, (2, {B, (2,0)} {B, (1,0)}
»Can be applied to various arch. with custom fitness func. E:(0.2) | cossoverfc @1y (G0} ol ke
An individual chromosomes 22} e e 0 e o
. . . {E, (0,2)} {E, (1,1)} {E, (0,2)} {E, (1,1)}
. »Based on NSGA-II, a multi-objective GA ) \(amapping to 3x3 PEs)  (list) Ex. of crossover (1-point crossover) p

Case study: combining body bias optimization  Case study: latency balancing for RHP-CGRA

»Body biassing can »Targeting 3x3 convolution filter
»boost computation performance at the cost of leakage T D . pEIEE :1\ e
»reduce leakage of PEs on non-critical paths ey 7%%2 - l >_9/ M}/ P
»Compared to other uni-objective mapping algorithms ey ot T 1L ) B e o
%:2 *-GenMap | »40+% energy reduction | _M_TD —\V{-{ ILi | N | _9(/7/ i L
g o |+ SPKM »2.0x speed up > I I ] . | p-
x T - T = B ¢
c 4 rray || T g : ' '
2 ) §_ Mapping result Latency (:::.eba/cv;/] LVEO nputs Mapping result (no latency difference)
0 = . c e a .
€ 400 200 300 400 500 600 700 800 = Without optimization of latency balancing  With optimization of latency balancing
performance Requirement (MOPS e Tl > By adding a fitness function to evaluate maximum latency difference
Comparison of S Tili] T LT ya & Y
\\ power and maximum performance A tested chip: CC-SOTB, a family of CMA AN » A perfectly balanced DFG mapping can be obtained y

O N.Ozaki, et al., IEEE Micro 31.6 (2011), pp. 6-18. O A.Podobas, et al., In Proc of ASAP 2020, pp. 1-8 O A.Ohwada, et al., In Proc of SASIMI 2021, pp. 19-24.
O T.Kojima, et al., TVLSI 28.11 (2020), pp. 2383-2396. O [GenMap open-source]: https://github.com/hungalab/GenMap



