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Introduction

CGRA (Coarse-Grained Reconfigurable Architecture) is a promising computation platform thanks to its programmability and high energy efficiency. Instead of bit-level
reconfigurability like FPGAs, CGRAs have a coarser one (i.e., word-level), which mitigates the complexity of the compiler’s task. However, the compilation process for CGRAs,
including optimization, is still challenging since each CGRA targets different applications and needs different optimization policies. In this presentation, we introduce our toolchain

\to compile and optimize CGRA applications and show some case studies targeting two different CGRAs, one for 10T and embedded systems and the other for HPC workloads. Y,
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Our compilation & optimization toolchain for CGRAs
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Case study: combining body bias optimization  Case study: latency balancing for RHP-CGRA
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