Real Chip Evaluation of a Low Power CGRA with Optimized Application Mapping

<u>Takuya Kojima</u>, Naoki Ando,

Yusuke Matsushita, Hayate Okuhara,

Nguyen Anh Vu Doan and Hideharu Amano

Keio University, Japan

International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART2018), Toronto, Canada

Outline

- Introduction
- A CGRA Architecture
- Three Types of Control
 - 1. Pipeline Structure Control
 - 2. Body Bias Control
 - 3. Application Mapping
- New Mapping Optimization Method
 - Real Chip Implementation
- Experimental Results
- Conclusion

Importance of Low Power Consumption

- Forthcoming
 IoT devices
 Wearable computing
 Sensor network
- Challenges
 High performance
 For image processing
 - Low Power Consumption
 - For long battery life

SF-CGRAs: Straight-Forward **Coarse-Grained Reconfigurable Arrays**

Key features of straight-forward CGRAs

- Limited data flow direction ■ Less frequent reconfiguration
 - Pipelined PE array ■ High energy efficiency ₄

VPCMA: Variable Pipelined Cool Mega Array [1]

[1] N.Ando, et al. "Variable pipeline structure for Coarse Grained Reconfigurable Array CMA." ⁵ *Field-Programmable Technology*, 2016.

Pipeline Structure Control

Number of Pipeline Stage				
	Large	Small		
Operating Frequency				
Throughput				
Glitch Propagation				
Dynamic Power of Registers & Clock				

Pipeline Structure Control

Num	ber of	Pipe	line S	Stage

	Large	Small	
Operating Frequency			
Throughput			
Glitch Propagation			
Dynamic Power of Registers & Clock			

7

Body Bias Effects on SOTB

SOTB Technology

■ 65 nm

- One of FD-SOI
- Body Biasing

Row-level Body Bias Control

Delay Time of PE for Each Opcode

How to map an application to the PE array?

An app. is represented as a data flow graph (DFG)
 Various Mappings exist

How to map an application to the PE array?

An app. is represented as a data flow graph (DFG)
 Various Mappings exist

Complexity of Mapping Optimization

Related work

- 1. Performance & power optimization for CGRA[2]
 - Considering VDD control
 - Optimization Priority: Performace > Power
- 2. Body bias domain size exploration for CGRAs[3]
 - Analysis of area overhead and power reduction effects
 - Not taking care of the dynamic power
- 3. Pipeline & body bias optimization for CGRAs [4]
 - Method using integer-linear-program
 - Assuming static mapping

[2] Gu, Jiangyuan, et al. "Energy-aware loops mapping on multi-vdd CGRAs without performance degradation." *Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific*. IEEE, 2017.
[3] Y.Matsushita, "Body Bias Grain Size Exploration for a Coarse Grained Reconfigurable Accelerator", Proc. of the 26th The International Conference on Field-Programmable Logic and Applications (FPL),2016.
[4] T. Kojima, *et al.* "Optimization of body biasing for variable pipelined coarse-grained reconfigurable architectures". IEICE Transactions on Information and Systems, Vol. E101-D,No. 6, June 2018.

Is optimizing only the power consumption enough?

Several requirements

- Power Consumption
- Performance (Operating Frequency)

■ Throughput

Multi-Objective Optimization brings users
 A variety of choices
 Balancing the tradeoffs

Proposal: Use Multi-Objective Optimization

- Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
 - Multi-Objective Genetic Algorithm
- In this work
 - ■1-point crossover
 - Commonly-used probability [5]
 - 0.7 crossover probability
 - 0.3 mutation probability
 - ■300 generations

[5] L. Davis. "Adapting operator probabilities in genetic algorithms". In Proceedings of the third international conference on Genetic algorithms, pp. 61–69, San Francisco, CA, USA, 1989. ¹⁵ Morgan Kaufmann Publishers Inc.

Gene & Evaluation of Individuals

Gene & Evaluation of Individuals

Gene & Evaluation of Individuals

An Implemented Real Chip "CCSOTB2"

CCSOTB2

- VPCMA Architecture
- SOTB 65nm Technology
- 5 Body Bias Domains
- Design: Verilog HDL
- Synthesis: Synopsys Design Compiler
- Place & Route: Synopsys IC Compiler

Body Bias Domains			
domain1	1-5th PE Rows		
domain2	6th PE Row		
domain3	7th PE Row		
domain4	8th PE Row		
domain5	other parts		

Preliminary Experiments

- Leak power of PE row is measured
 BBV: -0.8 ~ +0.4 V (step: 0.2 V)
- Maximum Operating Freq.

■ 30MHz

due to bottleneck in μ-controller

Experimental Environment

Benchmark Applications

Name	Description
af	24bit alpha blender
gray	24bit gray scale
sepia	8bit sepia filter
sf	24 bit sepia filter

4 simple image processing applicationAssuming 30MHz frequency

Proposed method vs. Black-Diamond

Black-Diamond [7]

- does not support pipeline control nor body bias control
- Static mapping regardless of user's requirements
- Combine with pipeline optimization[6]
 Considering glitch effects

[6] T.Kojima, et al. "Glitch-aware variable pipeline optimization for CGRAs".

ReConFig2017, pp. 1–6, Dec 2017.

[7] V.Tunbunheng , *et al.* "Black-diamond: a retargetable compiler using graph with configuration bits for dynamically reconfigurable architectures". In Proc. of The 14th SASIMI, pp. 412–419, 2007. 22

Mapping quality

23

Mapping quality

Black-Diamond with pipeline optimization

-0.2 V OR 0.0 V 0.0 V SR SL ADD ADD SR MULT MULT MULT ADD 0.0 V AND AND SR MULT AND AND SR SR

Proposed method

Difference of mapping results (af application)

Power reduction

Conclusion

- A new optimization method based on a multiobjective genetic algorithm is proposed
- Three controls are considered simultaneously
 - 1. Pipeline structure control
 - 2. Body bias control
 - 3. Application mapping
- Real chip experiments shows 14.2% power reduction

End of presentation Thank you for your attention

Any questions?