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Outline
n Introduction
n A CGRA Architecture
n Three Types of Control

1. Pipeline Structure Control
2. Body Bias Control
3. Application Mapping

n New Mapping Optimization Method
n Real Chip Implementation
n Experimental Results
n Conclusion �



Importance of 
Low Power Consumption

nForthcoming
nIoT devices
nWearable computing
nSensor network

nChallenges
nHigh performance

nFor image processing
nLow Power Consumption

nFor long battery life
�



SF-CGRAs: Straight-Forward 
Coarse-Grained Reconfigurable Arrays

n Key features of straight-forward CGRAs
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n Limited data flow direction
n Less frequent reconfiguration

n Pipelined PE array
nHigh energy efficiency �



VPCMA: Variable Pipelined 

Cool Mega Array [1]

n PE array consists of

n 8 x 12 PEs

n 7 pipeline registers

n PE has

n No Register file

n No clock tree

n Pipeline register works in

1. latch mode 

2. bypass mode

n μ-Controller

n Controls data transfer

data mem. ↔ PE array
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[1] N.Ando, et al. "Variable pipeline structure for Coarse Grained Reconfigurable Array CMA." 

Field-Programmable Technology, 2016.
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Pipeline Structure Control
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Pipeline Structure Control
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Body Bias Effects on SOTB

n Tradeoff between leak power and performance 

Decrease
of Static Power

Performance
Enhancement

Zero BiasReverse Bias Forward Bias

n SOTB Technology
n 65 nm
nOne of FD-SOI
n Body Biasing
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Row-level Body Bias Control
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How to map an application
to the PE array?

n An app. is represented as a data flow graph (DFG)

n Various Mappings exist
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How to map an application
to the PE array?

n An app. is represented as a data flow graph (DFG)

n Various Mappings exist
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Application DFG

PE Array

n Small Power

n Low Performance

Mapping Eval.
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Complexity of Mapping Optimization

3. Body Bias Voltage
(BBV) for Each Row2. Pipeline

Structure
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Dynamic
Power

Static
Power

(# of Rows)^(# of voltages)
patterns

NP-Complete Problem

128 patterns

n Tradeoff between leak power and dynamic power

Interdependent
on each other

control
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Related work

1. Performance & power optimization for CGRA[2]

n Considering VDD control

n Optimization Priority: Performace > Power

2. Body bias domain size exploration for CGRAs[3]

n Analysis of area overhead and power reduction effects

n Not taking care of the dynamic power

3. Pipeline & body bias optimization for CGRAs [4]

n Method using integer-linear-program

n Assuming static mapping

��

[2] Gu, Jiangyuan, et al. "Energy-aware loops mapping on multi-vdd CGRAs without performance degradation.”

Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific. IEEE, 2017.

[3] Y.Matsushita, “Body Bias Grain Size Exploration for a Coarse Grained Reconfigurable Accelerator”, 

Proc. of the 26th The International Conference on Field-Programmable Logic and Applications (FPL),2016.

[4] T. Kojima, et al. “Optimization of body biasing for variable pipelined coarse-grained reconfigurable architectures”. 

IEICE Transactions on Information and Systems, Vol. E101-D,No. 6, June 2018.



Is optimizing only the power 
consumption enough?

n Several requirements
n Power Consumption
n Performance (Operating Frequency)
n Throughput

n Multi-Objective Optimization brings users
nA variety of choices
nBalancing the tradeoffs

Power

PerformanceThroughput
��



Proposal: Use Multi-Objective 
Optimization

n Non-dominated Sorting Genetic 
Algorithm-II (NSGA-II)
nMulti-Objective Genetic Algorithm

n In this work
n1-point crossover
nCommonly-used probability [5]

n0.7 crossover probability
n0.3 mutation probability

n300 generations

[5] L. Davis. “Adapting operator probabilities in genetic algorithms”. In Proceedings of the third 
international conference on Genetic algorithms, pp. 61–69, San Francisco, CA, USA, 1989. 
Morgan Kaufmann Publishers Inc.
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Gene & Evaluation of Individuals
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Gene & Evaluation of Individuals

������	��� DFG Mapping Pipeline Structure
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• Dynamic power model

• Proposed in [6]

• Considering glitch

propagation

• Based on results

of real chip 

measurements

[6] T.Kojima, et al. “Glitch-aware 

variable pipeline optimization for 

CGRAs”. ReConFig2017, pp. 1–6, 

Dec 2017.



Gene & Evaluation of Individuals

������	��� DFG Mapping Pipeline Structure
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Critical 
Path Delay

• An Integer Linear Program (ILP)
• Minimizes the static power
• Considers timing constraints
• Takes within 0.1 sec

• The same method as proposed
in [4]

[4] T. Kojima, et al. “Optimization of body 
biasing for variable pipelined coarse-grained 
reconfigurable architectures”. IEICE Transactions 
on Information and Systems, Vol. E101-D,
No. 6, June 2018.



An Implemented Real Chip “CCSOTB2”

n CCSOTB2
n VPCMA Architecture
n SOTB 65nm Technology
n 5 Body Bias Domains

n Design: Verilog HDL
n Synthesis: Synopsys Design Compiler
n Place & Route: Synopsys IC Compiler

6mm

3m
m

TCI

PE Array

Body Bias Domains
domain1 1-5th PE Rows
domain2 6th PE Row 
domain3 7th PE Row 
domain4 8th PE Row 
domain5 other parts
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Preliminary Experiments

n Leak power of PE row is measured
n BBV: -0.8 ~ +0.4 V (step: 0.2 V)

n Maximum Operating Freq.
n 30MHz
n due to bottleneck in μ-controller

CCSOTB2 Chip Artex-7
FPGA

Experimental Environment

Mother Board

��

Zero
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Benchmark Applications

n4 simple image processing application
nAssuming 30MHz frequency

Name Description
af 24bit alpha blender

gray 24bit gray scale
sepia 8bit sepia filter

sf 24 bit sepia filter

��



Proposed method vs. Black-Diamond

nBlack-Diamond [7]
ndoes not support pipeline control

nor body bias control
nStatic mapping regardless of user’s requirements

nCombine with pipeline optimization[6]
nConsidering glitch effects

[6] T.Kojima, et al. “Glitch-aware variable pipeline optimization for CGRAs”.  
ReConFig2017, pp. 1–6, Dec 2017.
[7] V.Tunbunheng , et al. “Black-diamond: a retargetable compiler using graph with configuration bits
for dynamically reconfigurable architectures”. In Proc. of The 14th SASIMI, pp. 412–419, 2007. ��



Mapping quality

Black-Diamond with
pipeline optimization Proposed method

Difference of mapping results (gray application)

0.0 V
0.0 V

-0.4 V
-0.4 V
-0.4 V
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Mapping quality

Black-Diamond with
pipeline optimization Proposed method

Difference of mapping results (af application)

0.0 V
0.0 V

0.0 V
0.0 V
-0.2 V
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Power reduction

n For all applications, the total power is reduced
n In average, 14.2 % reduction is achieved

��



Conclusion
n A new optimization method based on a multi-

objective genetic algorithm is proposed
n Three controls are considered simultaneously

1. Pipeline structure control
2. Body bias control
3. Application mapping

n Real chip experiments shows 14.2% power 
reduction
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