A Preliminary Evaluation of Building Block Computing Systems

- Sayaka Terashima*, Takuya Kojima*, Hayate Okuhara*,
 - Kazusa Musha*, Hideharu Amano*,
 - Ryuichi Sakamoto⁺, Masaaki Kondo⁺,
 - Mitaro Namiki§
 - *Keio University, *The University of Tokyo,
 - [§] Tokyo University of Agriculture and Technology
- 2019 IEEE 13th International Symposium on embedded Multicore/Manycore Systems-on-Chip (IEEE MCSoC-2019)

Limitation of a Monolithic SoC

- Many requests for recent embedded system
 - High performance, high functionality
 - Low power consumption, low cost
- Increasing NRE cost of LSI chip
 - Due to complicated design, test, mask
- Problems
 - Hard to meet such demand with a single SoC
 - High cost to develop a LSI for each application (ASIC)

Building Block Computing System

• A technique of SiP (System in Package)

Building Block Computing Systems

• For flexible & various systems

- Combining several basic chips depending on target apps.
- Using ThruChip Interface (TCI) for inter-chip communication

TCI: ThruChip Interface[1]

- A wireless data transferring technique
 - Employing electromagnetic wave of coils
 - No need of special fabrication process
 - Up to 8 Gbps with 10⁻¹²
 bit error ratio
- TCI IP includes
 - Two SERDESes for Rx & Tx
 - An oscillator for trans. CLK

[1] Y. Take, *et al*, "3D NoC with Inductive-Coupling Links for Building-Block SiPs," IEEE Transactions on Computers, vol. 63, no. 3, pp. 748–763, 2014.

Escalator Network by TCI Link

- Stacked chips form ring network
 - A packet-based network
 - The packet is composed of 1~17 of 35-bit flits

Cube-2: A Prototype of Building Block Computing Systems

• Geyser^[2]

- MIPS R3000 compatible CPU

- Accelerators
 - -CC-SOTB2^[3]
 - High energy efficient CGRA
 - SNACC^[4]
 - CNN accelerator
 - KVS^[5]
 - Non-SQL DB accelerator

[2] L. Zhao, *et al.* "Geyser-2: The second prototype CPU with fine-grained run-time power gating", Proc of the 16th ASP-DAC 2011.
[3] T. Kojima, *et al.* "Real Chip Evaluation of a Low Power CGRA with Optimized Application Map- ping", Proc of the 9th HEART 2018.
[4] R.Sakamoto , *et al.* "The design and implementation of scalable deep neural network accelerator cores," in Proc. of IEEE MCSoC 2017
[5] Y.Tokuyoshi, , *et al.* "Key-valueStoreChipDesign for Low Power Consumption," in Proc of IEEE CoolChips 22 (2019).

Shared Memory for Twin-Tower (SMTT)

- A bridge SRAM chip
 - Has two TCI IP
 - Shares 256KB between twin towers
 - Provides atomic operation *Fetch&Dec* for synchronization among stacked chips
 - Supports DMA transfer

Overview of GeyerTT

- Geyser architecture
 - MIPS R3000 compatible CPU
 - General compilers are available
 - Responsible for host controller of Cube-2 system
 - Including 2-way d-cache、 2-way i-cache、 TLB
- GeyserTT
 - A real chip Implementation of Geyser for Twin-Tower
 - Three TCI IP for various stacking structure

Overview of SNACC

- SNACC architecture
 Composed of 4 cores
- Each core consists of
 - —Custom SIMD unit
 - General-purpose ALU & Regfile
 - 5 distributed memories
 - 1. Instruction
 - 2. Input data
 - 3. Weight data
 - 4. Look-up-table
 - 5. Write buffer

9

Memory-Mapped Chips

Contributions of This Work

- Fabricating & evaluating Cube2-family chips
 - Focusing on GeyserTT, SNACC, SMTT
 - About power consumption & performance
 - Based on real chip measurement
- Evaluating TCI IP itself
 - About feasibility of this technology
 - About power consumption & performance
 - Based on real chip measurement
- Demonstrating possibility for practical apps.
 - With CNN application as a case study

Real Chip Implementation

		GeyserTT			
Process	Renesas SOTB 65nm				
Supply voltage	0.75 V				
Design	Verilog HDL				
Synthesis	Synopsys Design Compiler 2016.03-SP4	TCI IP		SMTT	
Place & Route	Synopsys IC Compiler 2016.03-SP4		Stacked	Chip	S
Chip size	SNACC & GeyserTT 3mm x 6mm			•	
	SMTT 6mm x 6mm				
Target Frequency	SNACC & GeyserTT 50MHz				
	SMTT 100MHz				
	TCI IP 50MHz				13

Evaluation: Power Consumption

Evaluation: TCI performance

- GeyserTT x SNACC case
 - Bidirectional links can work
 - Compared to design value (50MHz)
 - TCI consumes maximum 2.0x power & achieves 0.12x performance
- GeyserTT x SMTT case
 - Upward link does not work
- But the latest chip shows
 - 10~15MHz transfer
 - 1.5x power than design value

Evaluation: TCI power consumption

Case study: Processing FC layers of a CNN

• Last two FC layers of AlexNet^[6]

layer	# of input	# of output	Kernel size	Bias
FC7	4096	4096	(4096, 4096)	4096
FC8	4096	1000	(1000, 4096)	1000

[6] A. Krizhevsky, I. Sutskever and G. E. Hinton: "Imagenet classification with deep convolutional neural networks", Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS'12, USA, Curran Associates Inc., pp. 1097–1105 (2012).

Evaluation: Simulated Configurations

- Evaluated system configurations
 - 1. <u>GeyserTT</u>
 - 2. <u>GeyserTT x2 + SMTT</u>
 - 3. GeyserTT + SNACC
 - 4. GeyserTT x2 + SNACC x2 + SMTT

Evaluation: Simulated Configurations

- Evaluated system configurations
 - 1. GeyserTT
 - 2. GeyserTT x2 + SMTT
 - 3. <u>GeyserTT + SNACC</u>
 - 4. <u>GeyserTT x2 + SNACC x2 + SMTT</u>

Evaluation: Execution time @50MHz

• The execution time for each configuration includes data transfer time through TCI

Conclusion

- Evaluating some real chip fabricated with Renesas SOTB 65nm technology
 - MIPS R3000 processor ~35mW @ 50MHz
 - CNN accelerator & memory chip ~4mW @ 50MHz
- Demonstrating chip stacking with TCI
 - Communications partially work
 - Much larger power is consumed than designed one
 - A twin-tower system achieves x6.0 higher performance
- Future work
 - Optimization of TCI power using sleep mode
 - Refinement of power grid for TCI IP
 - Partially completed
 - Use of other family chip such as CC-SOTB2 & KVS