An Architecture-Independent CGRA

Compiler enabling OpenMP Applications

Takuya Kojima', Carlos Cesar Cortes Torres’, Boma
Adhi*, Yiyu Tan®, Kentaro Sano®

t The University of Tokyo, Japan
¥ RIKEN, Japan

Coarse-grained reconfigurable architectures

PE Array
PE k> PE > PE k| PE Data to neighbors/Data memory
mapplng > P¢E’ N P¢E’ N P¢E' N P¢E’ [Output Register]
“EJ i i i i
= || [pe] pE] PE || PE VAN
A data flow graph = || [Pe}-{pe{pe]-|Pe o THT
as an application] t]] Data from neighbors/Data memory
N Casic) General structure of the CGRAs
E_’ ®@ B Coarse-Grained Reconfigurable Architecture (CGRA)
% ® Composed of an array of Processing Elements (PEs)
: ® Providing a word-level reconfigurability (e.g., 32-bit)

Smaller energy-overhead than FPGAs (bit-level)

Performance

Comparison with other architectures[2] ¥ Generally used as an accelerator

[2] Liu, Leibo, et al. "A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and applications.”
ACM Computing Surveys (CSUR) 52.6 (2019): 1-39.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 2

Purpose & Proposal

B Trend in CGRA research: design space exploration framework
B Highly customizability
W Possibilities of domain-specific architecture

W Recent work: CGRA-ME [3], OpenCGRA [4], RIKEN CGRA [5]
DSAGEN [6] (ISCA 2020), SNAFU [7] (ISCA 2021)

B Challenge
B No general-purpose & architecture-independent compiler frontend for CGRAs
B Needs of abstracting hardware layer for software programmers

B Our proposal
B A compiler framework enabling OpenMP offloading to CGRAs
W A case study: implementation for RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 3

Wide Variety of Design Choices

B Characteristics of CGRA Design
W Reconfiguration style

W PE array size

M Interconnection topology

B Operational capabilities in PE
¥ Ability to handle control flows

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 4

Wide Variety of Design Choices

B Characteristics of CGRA Design

»Reconfiguration style
Time-Multiplexing manner

Data-Flow-Graph
(DFG)

Spatial one \

W PE array size l Time.
M nterconnection topology "
W Operational capabilities in PE
® Ability to handle control flows

Cycle 0

Cycle 1

Cycle 2

Spatial manner Time-Multiplexing manner

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 5

Wide Variety of Design Choices

B Characteristics of CGRA Design
W Reconfiguration style

»PE array size
Ranges 10-104

M Interconnection topology
W Operational capabilities in PE

B Ability to handle control flows

100000

10000

1000

100

The Number of PEs

—_
o

1

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

Distribution of the PE array size [8]

A ASIC X FPGA Overlay
A

A
. P 4 4
A a R ¥ § g ; A R 2;

A AA ga A

1 A . Af ‘x§§§§A:‘
A A R IR 4
X
2000 2005 2010 2015 2020

Wide Variety of Design Choices

B Characteristics of CGRA Design

>

Reconfiguration style
PE array size

nterconnection topology
Mesh
Meshplus

Torus, etc mesh mesh-plus

W Operational capabilities in PE

m Ability to handle control flows

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 7

Wide Variety of Design Choices

B Characteristics of CGRA Design

W Reconfiguration style .
Data to nelghbo$rs/Data memory
. DE array SIZe Output Register
M |nterconnection topology ,t—-\ | |
. L . m\ 32bit? 64bit?

»Qperational capabilities in PE 3=’ |[int? float? fixed?

Bit-width ST

Floatlng pOInt Data from neighbors/Data memory

SIMD

Custom instruction (e.g., ReLU, sigmoid for ML)
W Ability to handle control flows

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 8

Wide Variety of Design Choices

B Characteristics of CGRA Design

W Operational capabilities in PE

»Ability to handle control flows
Conditionals are supported or not ?

Reconfiguration style
PE array size

nterconnection topology

Loop-carried dependence is allowed or not ?

for (...) {
if (@ > 0){
X = b;
} else {
X =C

}

}

Loop containing

conditional parts

é

DFG with
Partial Predication

Partial predication on CGRAs

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 9

A case of CGRA: RIKEN CGRA [5]

s9|i} Joqybiau

Tile Array : :
ol s lpelrel pelu/pell s Lhlo| ™ Design template for design space
é ¥ — é exploration
£ || LS | PE [+ PE || PE [PE [~ LS <> £ B Implemented with SystemVerilog
= ' ' ' ' | |>| ™ Two types of tiles
O [« LS [« PE [«* PE || PE [«>{ PE [+| LS [«t>| ©
qEJ . ;] . GE) 1. LS (Load/Store)
= || s Lol PE kol PE || PE kol PE |ol L l»[= Data access according to loop control

info.
N o = LS tile 2. PE
Iz [, HIFO = g.. ? % FIFO Store data .
£ } s SIER g Computation
»/ IMM ,' 3' é' ; fddress Address g . . .
BN } S % Lo nfe| Generator -5 M Reconfiguration style: Spatial
B] i N 2 2 | Comguamn : :
EE g T | [Lconfeurstondetal o | 3 B FIFO buffers allow operands to arrive
H— 1 Configuration daté] & < B . .
at different times

Overview of RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 10

Limitations of Existing Compilers

he First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

11

CGRA vs FPGA in compilation flow

E [Coarse granularity mitigates]

High-Level compilation complexity

Synthesis Sequential part
> for CPU

Logic Synthesis
lGate level netlist

Technology mapping Loop kernel
] LUT level netiist DFG extraction
Clustering Il .DFG
1 LB level netlist Mapping

Place&Route(+Scheduling)

Place&Route

! v
Configuration Configuration
data data

For FPGAs For CGRAs

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 12

Existing compilers for CGRAS

Targets
Architecture Reconf.

Musketeer (STP Tool) [9] C Renesas STP (DRP) ™
PipeRench Compiler [10] C-like DSL (DIL) PipeRench SP (TM) Commercial
PACT XPP-VC [11] C PACT XPP ™ ~ products
sambaflow™[12] o FEC e ROA SP
BlackDiamond [13] C-like DSL Parameterized TM/SP)
CCF [14] C (pragma) ADRES[16]-like ™
Kim, Hee-Seok, et al [15] OpenCL SRP ™
MENTAI [16] C Cool Mega Array SP
CGRA-ME [3] C Parameterized T™M/SP
OpenCGRA [4] C, Python DSL Parameterized ™
DSAGEN [6] C (pragma) Parameterized SP

TM: Time-Multiplexing, SP: Spatial

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 13

Existing compilers for CGRAS

Targets
Architecture Reconf.

Musketeer (STP Tool) [9] C Renesas STP (DRP) ™
PipeRench Compiler [10] C-like DSL (DIL) PipeRench SP (TM) Commercial
PACT XPP-VC [11] C PACT XPP ™ ~ products
sambaflow™[12] o FEC e ROA SP
BlackDiamond [13] C-like DSL Parameterized TM/SP)
CCF [14] C (pragma) ADRES[16]-like ™
Kim, Hee-Seok, et al [15] OpenCL SRP ™
MENTAI [16] C Cool Mega Array SP
CGRA-ME [3] C Parameterized T™M/SP
OpenCGRA [4] C, Python DSL Parameterized ™
DSAGEN [6] C (pragma) Parameterized SP
This work OpenMP Parameterized TM/SP

TM: Time-Multiplexing, SP: Spatial

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 14

Existing compilers for CGRAS

Targets
Architecture Reconf.

Musketeer (STP Tool) [9] C Renesas STP (DRP) ™
PipeRench Compiler [10] C-like DSL (DIL) PipeRench SP (TM) Commercial
PACT XPP-VC [11] C PACT XPP ™ ~ products
PyTorch SambaNova
™ ,
salleEle e TensorFlow, etc RDA oF _
’/Design space exploration \?

Fair comparison between various types of CGRAs
Reuse of source codes
Minimizing efforts to modify the codes

Easy to compare other architectures

\ Comparing to GPU, many-core CPU with the same kerne;/
O] TP o S

This work OpenMP Parameterized TM/SP
TM: Time-Multiplexing, SP: Spatial

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 15

Kir

Our Proposal: CGRA OpenMP

he First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

16

Target directive

B Accelerator offloading features
W Added since OpenMP 4.0

W Similar concept to OpenACC
® Mainly supporting GPU offloading

W Explicit data transfer between hosts and device (map clause)

omp target map(to: v1, v2) map(from: p)
omp parallel for private(i)
(i =0; 1 <N; i++) {

pli] v1[i] v2[i];

Code snippet with target directive [17]

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 17

Implementation based on LLVM

B [LVM: An open-source compiler framework
B LLVM-IR: target-independent intermediate representation
B Common optimization and analysis algorithms (Pass)

W Official sub-projects
C frontend Clang, Fortran frontend Flang, OpenMP, etc

X386
asm

ARM
asm

‘ LLVM
IR -

—D(Optilrgized -

—
RISC-V
asm

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

Compilation flow in CGRA OpenMP

B Compiler-driver can automate
the compilation

—
Host
|_|_V|\/| Bundle O|‘t|)C.)Stt
s o IR e
OpenMP LLVM Control
Code IR

CGRA
LLVM CGRAOmp

R Pass

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 19

Compilation flow in CGRA OpenMP

B Compiler-driver can automate
the compilation

(1)Dividing into host and (Host
device (CGRA) codes LLUM Ol_tl)?;t:t
((IR
OEGZIMP_} LLI\R{M BN Control
ode
pa—
EE\E{O ! CGRAOmp
IR Pass

B clang-offload-bundler

W A utility tool for heterogeneous single source
programming languages.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 20

Compilation flow in CGRA OpenMP

B Compiler-driver can automate
the compilation

—
Host
o
S o IR =
OpenMP LLVM (2) Control
Code IR
[| CGRA CGRAOMp |[:)Iata
B CGRAOmpPass Pass o
e L Graph
B Code verification

B DFG extraction

B Runtime insertion CGRA ®Y Mapping
_ Model

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 21

Compilation flow in CGRA OpenMP

B Compiler-driver can automate
the compilation

—
Host
LLVM Bundle Ol_tl)c')Stt
) — R jec
OpenMP LLVM
Code R (Colnéro' (3) Generate
Executable for host

—
CGRA
LLVM CGRAOmp
R Pass

B Template for runtime routine
M Data transfer
B Configuration

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 22

Compilation flow in CGRA OpenMP

B Compiler-driver can automate
the compilation

—
Host
Host
|_|_\/|\/| Bundle Obc')eSCt
e 2 IR :
OpenMP LLVM Control
Code IR (4) Mapping
— (PnR)

EE\E{ I\él\ CGRAOmp Data
P ¥ Flow

ass
IR Graph

B Generated DFG independent
of mapping algorithm BN Mapping
B DOT format

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 23

CGRA Model Description

he First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

24

CGRA model description

B The model defines CGRA execution style, etc (JSON)

"category": "decoupled",
"address_generator": {
"control": "affine",
"max_nested_level": 3
}
"conditional" : {
"allowed": false
}
"inter-loop—-dependency": {
"allowed": false
}
"custom_instructions": ["fexp", "fsin", "fcos” 1,
"generic_instructions": ["add", "sub", "mul", "udiv", '"sdiv",
Ilandll’ Ilor.ll’ IIXOrII, Ilfaddll’ Ilfsubll’ Ilfmulll’ IlfdiV"]’
"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},

_{ Ilinstll: leorll’ Ilmapll: leor.ll}
]

}
An example: the case of RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 25

CGRA model description

B The model defines CGRA execution style, etc (JSON)

{
"category": "decoupled", o . \\\
"address_generator": { B Classification of CFGRAs

"control": "affine",
"max_nested_level": 3 B Decoupled
}, : :
eonditional® : { B An execution model decouplmg
"allowed": false memory access and computation [6]

), /

“"inter—loop—-dependency" :
"allowed": false
}

"custom_instructions": ["fexp", "fsin", "fcos” 1,
"generic_instructions": ["add", "sub", "mul", "udiv", '"sdiv",
Ilandll’ Ilor.ll’ IIXOr", Ilfaddll’ Ilfsubll’ Ilfmulll’ IlfdiV"]’

"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},

{ "inst": "xor", "map": "xor"}

]
by

An example: the case of RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 26

CGRA model description

B The model defines CGRA execution style, etc (JSON)

"address_generator": {
"control": "affine",
"max_nested_level": 3

B Ability to memory access control
B Only affine access is allowd
B Up-to 3-nested loops

m e, Cy+ Civy + Covy + C3v3

I,
conditiona :
"allowed": false

}

“"inter—loop—-dependency" :
"allowed": false

}

"custom_instructions": ["fexp", "fsin", "fcos” 1,
"generic_instructions": ["add", "sub", "mul", "udiv", '"sdiv",

Ilandll’ Ilor.ll’ IIXOr", Ilfaddll’ Ilfsubll’ Ilfmulll’ IlfdiV"]’
"instruction_map": [

{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},

{ "inst": "xor", "map": "xor"}

]
by

An example: the case of RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 27

CGRA model description

B The model defines CGRA execution style, etc (JSON)
{

"category": "decoupled",

"address_generator": { .
"control": "affine", B Ability to handle control flow

} ERCIEAISETEETE ¢ B |n this example of the CGRA

"conditional" : B Both conditional and loop-
"allowed": false

y) carried decencies are not

"inter-loop-dependency": supported
"allowed": false
}

[TSTOm_1INnstra ons ™t exp", "fsin", "fcos” 1,
"generic_instructions": ["add", "sub", "mul", "udiv", '"sdiv",

"and", "or", "xor", "fadd", "fsub", "fmul", "fdiv”l],
"instruction_map": [

{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},

{ "inst": "xor", "map": "xor"}

]
by

An example: the case of RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 28

CGRA model description

B The model definc DA avariitian A o al)
{

B What kind of instructions are supported in ALU
iigjf,ig;’;‘f B custom_instructions. instructions not in LLVM-IR
;ZT,’,’Z B The Same function name should be used in codes
B generic instructions. Corresponding LLVM IR instructions
B /nstruction_map. mapping LLVM IR instr. to ALU opcode
B Some mapping conditions are available

I,
"conditio
"allowe

I,

"inter—-locY
"allowed": false

I,

"custom_instructions": ["fexp", "fsin", "fcos” 1,
"generic_instructions": ["add", "sub", "mul", "udiv", '"sdiv",
Ilandll’ Ilor.ll’ IIXOr", Ilfaddll’ Ilfsubll’ Ilfmulll’ IlfdiV"]’

/

"instruction_map": [
{ "inst": "xor", "rhs": {"ConstantInt" : -1}, "map": "not"},

{ "inst": "xor", "map": "xor"}

]
by

An example: the case of RIKEN CGRA

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 29

CGRA model description

B What kind of instructions are supported in ALU
B custom instructions. instructions not in LLVM-IR
B The Same function name should be used in codes
B generic instructions. Corresponding LLVM IR instructions
B /nstruction_map. mapping LLVM IR instr. to ALU opcode
B Some mapping conditions are available /

"inter—-locY

GRAOMP_CUSTOM_INST float FMA(float x, float y, float z) {

Xk Yy +:2;

function declaration in source codes for the custom instruction

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

Flow of CGRAOmpPass

CGRAOmMpPass
/
OpenMP 0 qE,
CGRA @ £
(@) c
target IR o 2 ‘g’ p _’[Repllsced
. g
3~ = T
CGRA K = 3
Model § — =
JSON ’[ore

~\

[Loop Info.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 31

Flow of CGRAOmpPass

CGRAOmMpPass
/
OpenMP 0 qE,
CGRA | — @ E
(@) c
target IR o 2 ‘g’ p _’[Repllsced
s 8 g
3~ = T
CGRA K = 3
Model [§ > =
JSON ’[ore

[] Verifies if the kernel can be executed on \\

the target CGRA
O Compeatibility of operations [Loop Info.

O Memory access pattern

O Loop structure, etc

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 32

Flow of CGRAOmpPass

CGRAOmMpPass
/
OpenMP 0 qE,
CGRA @ £
(@) c
target IR o 2 ‘g’ p _’[Repllsced
s 8 g
3~ = T
CGRA K 8 3
Model § -
JSON ’[ore
N[

B Extract the kernel as a DFG
™ DFG-level optimization as plugin

W if-conversion (if predication is supported) Loop Info.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 33

Code exmaple: 3x3 convolution

B convolution-2d.c from PolyBench-ACC

omp target parallel for private(i,j) map(to:A[:1[0:]1) map(from:B[:1[0:]) [REECIYVAIINeIr-Telas-NIS
1; i < _PB_NI - 1; ++i) inserted

(j 1; j _PB_NJ 1; j)

Bli] [j] = 0.2 Ali-1]1[j-1] + 0.5 Ali-1]11[j] 0.8 Ali-1]1[j+1]

0.3f x A[i 1[j-1] + 0.6 * A[1 1[j] 0.9f * A[i 1[j+1]
0.4 A[i+1] [j-1] 0.7 Ali+1]1[j] 0.1 Ali+1][j+1];

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 34

Demonstration of the compiler driver

bash $ cgraomp-cc convolution-2d.c —--cgra-config| presets/decoupled_affine_AG.json —-5ave-temps ——en
able-cgraomp-debug -Xclang="-I../../utilities"
Clang front-end
OpenMP target unbundling
Optimization of host code
1th Pre-Optimization of CGRA kernel code
Verify kernel, extract DFG, and insert runtime
[INFO]: Start verification

[INFO]: Instantiating CGRAModel

[INFO]: Searching for OpenMP kernels

[INFO]: Found offloading function: __omp_offloading_fd@4_24208e4_kernel_conv2d_198
[INFO]: Verifying a kernel for decoupled CGRA: .omp_outlined.

[INFO]: Detected perfectly nested loop in 2 nested loop kernel: for.body Nested level 1
[INFO]: Verifying Affine AG compatibility of a loop: for.body

[INFO]: Saving DFG: ./convolution-2d_.omp_outlined._for.body.dot

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 35

DFG Optimization after extraction

he First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

36

Generated DFG

B Data dependencies in LLVM-IR cause unbalanced DFG

Const_11 Const_17
Load_0 — Load_1 =
. float32=0.20 » float32=0.50

Const_15

: float32=0.80
oac float32=0.30

o8 float32=0.60

Const_14

float32=0.90

Const_16

fadd_30 Load 6 =

@ > float32=0.40

@ @] ﬂi:l?:;tz_(l).zm
o Computational node <y Ui

fadd_34

Store_35

Constant nodes

N~ Mem. access nodes

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 37

DFG-level optimization: Tree-Height-Reduction

B An important optimization for LSI design and High-level synthesis [18]

W Graph transformation based on commutativity & associativity of operators
e.g., addition (+), multiplication (*)

W This work integrates Huffman code-based algorithm [19] as a built-in pass

o
. O

/ » \G

P d‘édb

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 38

Applying Tree-Height-Reduction

M Easy to custom pass pipeline for DFG optimization

bash $ cgraomp-cc convolution-2d.c —--cgra-config presets/decoupled_affine_AG.json —-save-temps —-en
able-cgraomp-debug -Xclang="-I../../utilities" —-—-dfg-pass—-pipeline="balance-tree"|-Xclang="-ffast-
math"
Clang front-end
OpenMP target unbundling
Optimization of host code
1th Pre-Optimization of CGRA kernel code
Verify kernel, extract DFG, and insert runtime
[INFO]: Start verification
[INFO]: Instantiating CGRAModel
[INFO]: Searching for OpenMP kernels
[INFO]: Found offloading function: __omp_offloading_fd@4_24208e4_kernel_conv2d_198
[INFO]: Verifying a kernel for decoupled CGRA: .omp_outlined.
[INFO]: Detected perfectly nested loop in 2 nested loop kernel: for.body Nested level 1
[INFOl: Verifvina Affine AG compatibility of a loop: for.body
[INFO]: applying CGRAOmp::BalanceTree
[INFO]: Saving DFG: ./convolution-2d_.omp_outlined._for.body.dot

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

DFG after optimization

oo o
float32=0.40 float32=0.10

Const 11 Const 13

Load 4 Load 0 @ @
float32=-0.80 float32=0.50 float32=0.70 float32=0.60 float32=0.20 float32=-0.30 float32=-0.90
fadd_32 fadd_30 fadd_31 fadd_29
fadd_28 fadd_27
fadd_34

Store_35

O Computational node

Constant nodes

N~ Mem. access nodes

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 40

DFG Pass Plugin

M Easy to create and enable your own custom pass in similar manner in
LLVM

bool HelloDFGPass:: run(CGRADFG &G, Loop &L, FunctionAnalysisManager &FAM,
LoopAnalysisManager &LAM,

LoopStandardAnalysisResults &AR) bash $ cgraomp-cc convolution-2d.c --cgra-config presets/decoupled_affine_AG.json —-save-temps ——en

able-cgraomp—-debug -Xclang="-I../../utilities" —--dfg-pass—pipeline="hello" --load-dfg-pass—plugin=
1lvm::errs() "My DFG Pass is called: Hello World\n"; libHelloDFGPass.so
false; Clang front-end [
. OpenMP target unbundling [
NPass function Optimization of host code : [
1th Pre-Optimization of CGRA kernel code B
Verify kernel, extract DFG, and insert runtime [
extern "C" ::CGRAOmp: :DFGPassPluginLibraryInfo getDFGPassPluginInfo() { [INFO]: A plugin of DFG Pass "A sample of DFG Pass" is loaded
{ "A sample of DFG Pass", {INFg}: Start verification
) INFO]: Instantiating CGRAModel
[](QEEE§§§EHELQE; P?) { . [INFO]: Searching for OpenMP kernels
PB.registerPipelineParsingCallback([INFO]l: Found offloading function: __omp_offloading_fd@4_24208e4_kernel_conv2d_198
[1(StringRef Name, DFGPassManager &PM) - { [INFO]: Verifying a kernel for decoupled CGRA: .omp_outlined.
(Name "hello") { [INFO]: Detected perfectly nested loop in 2 nested loop kernel: for.body Nested level 1
PM.addPass (HelloDFGPass()); [INEQL- Verifyvinag Affine AG _comnatibility of a loop: for.body
R I [INFO]: applying HelloDFGPass
! My DFG Pass 1s called: Hello World

CINTOT™ .Jav.l.lly DraT =/ Tonvo caton— 2d omp_outlined._for‘. body- dot
false;

RCall back function

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 41

Evaluation

e First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

42

Experimental setup

B LLVM version 12.0.1

B CGRA design
m RIKEN CGRA
m 8x10 array (8x8 PE tiles + 8+8LS tiles)

B Benchmark: 3x3 convolution

B Backend (mapping algorithm)
B GenMapl[20] currently supports RIKEN CGRA
B Genetic algorithm-based mapping

GenMap

Application Mapping Framework for spatially mapping CGRAs
using Genetic Algorithm https.//github.com/hungalab/GenMap

@rython P 1 sBmiT

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 43

https://github.com/hungalab/GenMap

Mapping results

____________|priority | Total wire length Latencysith

naive DFG area 40.38 40 (5 x 8)
latency balance 50.56 56 (7 x 8) 2
Optimized DFG 46.21 40 (5 x 8) 0

Longer lat. 3

A

g

o' ul ul d

b
m e
=

A A A

> B>
> e)
Shorter lat. 2 Diff.: 3-2 | o d d | mop [fmul d
- A4 >
>_ﬁmul d;{ L d > o 1O d\ﬁmul
—frmul o I
LD | LD > <
naive DFG 5x8 mapping Optimized DFG 5x8 mapping

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 44

Conclusion & Future work

M This work

M Proposes a CGRA compiler designated to handle the same source code
regardless of the target architecture

B Uses OpenMP offloading

M Future work
¥ To extend verification and analysis for other types of CGRAs
¥ To Implement runtime insertion
¥ To make it work together with CGRA simulators or FPGA overlays

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 45

References

[1] Hennessy, John L., and David A. Patterson. "A new golden age for computer architecture." Communications of
the ACM 62.2 (2019): 48-60.

[2] Liu, Leibo, et al. "A survey of coarse-grained reconfigurable architecture and design: Taxonomy, challenges, and
applications." ACM Computing Surveys (CSUR) 52.6 (2019): 1-39.

[3] Anderson, Jason, et al. "CGRA-ME: An Open-Source Framework for CGRA Architecture and CAD Research." 20217
IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2021.
[4] Tan, Cheng, et al. "OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating
CGRAs." 2020 IEEE 38th International Conference on Computer Design (ICCD). IEEE, 2020.

[5] Podobas, Artur, Kentaro Sano, and Satoshi Matsuoka. "A template-based framework for exploring coarse-
grained reconfigurable architectures." 2020 IEEE 31st International Conference on Application-specific Systems,
Architectures and Processors (ASAP). |IEEE, 2020.

[6] Weng, Jian, et al. "Dsagen: Synthesizing programmable spatial accelerators." 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2020.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 46

References

[7] Gobieski, Graham, et al. "Snafu: an ultra-low-power, energy-minimal CGRA-generation framework and
architecture." 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2021.
[8] Podobas, Artur, Kentaro Sano, and Satoshi Matsuoka. "A survey on coarse-grained reconfigurable architectures
from a performance perspective." IEEE Access 8 (2020): 146719-146743.

[9] Renesas Electronics Corporation, “Dynamically Reconfigurable Processor (DRP) Technology Development |
Renesas”, https://www.renesas.com/us/en/application/key-technology/artificial-intelligence/voice-face-
recognition/drp-development, access 2022.

[10] Chou, Yuan, et al. "Piperench implementation of the instruction path coprocessor." Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitecture. 2000.

[11] Cardoso, Joao MP, and Markus Weinhardt. "XPP-VC: AC compiler with temporal partitioning for the PACT-XPP
architecture." International Conference on Field Programmable Logic and Applications. Springer, Berlin, Heidelberg,
2002.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 47

https://www.renesas.com/us/en/application/key-technology/artificial-intelligence/voice-face-recognition/drp-development

References

[12] SambaNova, Accelerated Computing with a Reconfigurable Dataflow Architecture. https://sambanova.ai/wp-
content/uploads/2021/04/SambaNova RDA Whitepaper.pdf, access 2022

[13] Tunbunheng, Vasutan, and Hideharu Amano. "Black-diamond: A retargetable compiler using graph with

configuration bits for dynamically reconfigurable architectures." Proc. 14th Workshop on Synthesis and System
Integration of Mixed Information Technologies (SASIMI). 2007.

[14] S. Dave and A. Shrivastava, “CCF: A CGRA compilation framework,” https://github.com/MPSLab-ASU/ccf,
access 2022

[15] Kim, Hee-Seok, et al. "Design evaluation of opencl compiler framework for coarse-grained reconfigurable
arrays." 2012 International Conference on Field-Programmable Technology. |EEE, 2012.

[16] Ohwada, Ayaka, Takuya Kojima, and Hideharu Amano. "MENTAI: A Fully Automated CGRA Application
Development Environment that Supports Hardware/Software Co-design."

[17] OpenMP, " OpenMP Application Programming Interface Examples”, 2016.

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC) 48

https://sambanova.ai/wp-content/uploads/2021/04/SambaNova_RDA_Whitepaper.pdf

References

[18] D.L. Kuck, Structure of Computers and Computations, John Wiley & Sons, Inc., 1978.

[19] K.E. Coons, W. Hunt, B.A. Maher, D. Burger, and K.S. McKin- ley, Optimal huffman tree-height reduction for
instruction-level parallelism, Computer Science Department, University of Texas at Austin, 2008.

[20] Kojima, Takuya, Nguyen Anh Vu Doan, and Hideharu Amano. "GenMap: A Genetic Algorithmic Approach for
Optimizing Spatial Mapping of Coarse-Grained Reconfigurable Architectures." IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 28.11 (2020): 2383-2396.

(e
49

The First International Workshop on Coarse-Grained Reconfigurable Architectures for High-Performance Computing (CGRA4HPC)

