
SLMLET: A RISC-V Processor SoC with

Tightly-Coupled Area-Efficient eFPGA Blocks

Takuya Kojima1, Yosuke Yanai2 , Hayate Okuhara3

Hideharu Amano2, Morihiro Kuga4 , Masahiro Iida4

1The University of Tokyo, 2Keio University,
3National University of Singapore, 4Kumamoto University

Paradigm Shift Towards Edge Computing

2

◼ Limited scalability of the conventional centralized cloud computing

◼ Increases transferred data

◼ Brings heavy computational loads

◼ Increases processing latency

◼ Edge Computing

◼Offloads some processing

to endpoint devices instead of Cloud server

◼ Emerging Demands for devices

◼High throughput

◼ Low latency

◼ Low energy Consumption

Cloud, Data center

Ever-growing

IoT devices Latency

increases

SLMLET: Our Proposed FPGA-CPU Hybrid SoC

◼ CPU: RISC-V RV32I
◼ Based on risc-v mini by UC Berkeley

◼ Responsible for system control

◼ Dedicated Inst./Data Mem. (Each 64KB)

◼ SLM (Scalable Logic Module)
◼ Embedded FPGA Blocks

◼ HyperBus Interface
◼ Compliant with JEDEC xSPI

◼ 2 banks of on-chip shared mem.
◼ 128KB/bank

◼ SPI master interface
◼ Boot loading & peripherals

◼ Up to 4 channels

3

SLMLET SoCの構成

eFPGA Blocks based on SLM

4

◼ Scalable Logic Module(SLM)

◼Memory-saving logic cell Based on Shannon

Expansion and NPN Equivalent Functions

◼ K-input logic function realized with (K-1)-LUT &

programmable NANDs (PNs)

◼ eFPGA IP Generator [1]

◼Allows customization of SLM input size, number of logic cells, etc.

◼Wilton-type Interconnection network

(k-1)-

LUT
PN

PN

PN

2bit

2bit

2bit

2(k-1)bit

1bit

Ik-1

I1

I0

out

SLM Cell Structure for K-input logic

SLM Structure SLM cells / LB # of LB Total SLMs DSP block Total FFs

5-SLM 4 BLE (SLM) 224 896 8 1024 bit

[1] Kuga, Morihiro, et al. "An eFPGA Generation Suite with Customizable Architecture and IDE." IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences 106.3 (2023): 560-574.

IP parameters employed for SLMLET

SLM Block and Peripheral Modules

5

◼ Configuration Controller

◼ Writing a Bitstream to the SLM Block

◼ Parallel Reconfigurable available

◼ Interconnect between shared SRAM
◼ Enables each module exclusive access

◼ Three difference data I/O of SLM Block

1. Direct access by RISC-V core (CSR) 8bit width

2. SRAM read/write 16bit data + 8bit address

3. 32bit stream to/from DMAC

◼Enables the external DRAM via HyperBus I/F

SLM

Block

Config.

Ctrl

DMAC

R
IS

C
-V

C
o

re

S
h
a
re

d
 S

R
A

M
 In

te
rco

n
n

e
c
t

B
a
n

ke
d

 S
h

a
re

d
 S

R
A

M

To/From

Hyperbus

16
8

32

c
o

n
tro

l

Prototype Implementation of SLMLET

◼ Fabricated with USJC DDC 55nm
◼ Small threshold voltage variation

◼ 240mV/V of a high body effect coefficient

◼Exciting leakage reduction by body bias control

◼ Employed Library

◼ C55DDCT07L60LVT

6

Chip photo of SLMLET Transistor Structure of DDC Process

Our HW/SW development flow

7

回路設
計

(RTL)

S
y
n

th
e
si

s
(Y

o
sy

s)

SLMLET

Library

T
e
ch

n
o

lo
g

y

M
a
p

p
in

g

(A
B

C
)

P
a
ck

in
g

 &

P
la

ce
m

e
n

t

(V
P

R
)

R
o

u
ti

n
g

(E
a
sy

R
o

u
te

r)

回路設
計

(RTL)
RTL

Designs
FPGA

Bitstream

Files

H
e
a
d

e
r

In
se

rt

B
u

n
d

le

C
o

m
p

il
e

（
G

C
C

)

FPGA

Object

File

Li
n

k

(L
D

)

C

Code

Files

Custom

Linker

Script

ELF

Binary

HW Part Design Flow with FPGA CAD

unsigned int* bitstream;

bitstram = loadBitstream(0, MEM_BANK0);

configurationSLMAsync(SLM_BLOCK0,

bitstream);

synchronizeConfigurationSLM(SLM_BLOCK0);

resetSLM(SLM_BLOCK0);

startSLM(SLM_BLOCK0);

Code Snippet for FPGA Configuration

Object

Files

SW Part Compiler Flow

Executable

Header

added

Bitstreams

C
o

m
p

re
ss

Code example to use SLM Block

8

STEP 1: loading configuration data into shared memory

STEP2 :Writing configuration data to SLM (Reconfiguration)

STEP 3: reset & enable signal to SLM Block

STEP 4: Access to memory mapped

registers on SLM

Our developed library

offers useful APIs

Test & Evaluation Environment

9

◼ PySLMLET
◼ PYNQ-Z2 board works as SLMLET host

◼ Developed Python driver to control HW on PYNQ-Z2 board

◼ PySLMLET-TUI for test automation
◼ Text-based UI for testing with variable conditions (running software binaries, voltage,

operational frequency, etc.)

SLMLET docked at PYNQ-Z2

Fully automated test and evaluation

PYNQ-Z2 Board

PS(ARM)

Zynq SoC

PL

(FPGA)
SLMLET

Board
Controller

Ethernet

Linux PC

Programmable Power Supply

PySLMLET
Server Change

Test Cond.

p y s l m l e t - t u i

PySLMLET
Client

TUI App.

USB

SLMLET Chip
HyperRAM

Hyperbus Ports

Evaluation benchmarks

10

◼ Used three applications

1. sram_memcpy

◼Copies 16 KB data block on the shared SRAM

2. CRC32

◼Computes CRC32 value for the given 1KB of binary data (polynomial 0x04C11DB7)

3. AES128

◼Encrypts one block of 128-bit plain texts

◼ SLM block part is designed with RTL implementation

◼ Software-only cases uses MiBench source codes

Power and energy consumption comparison

11

E
n

e
rg

y
 n

o
rm

a
li
ze

d

to
 S

LM
L
E
T
(S

W
)

About 70us

Energy consumption at peak performance
Power consumption for each frequency

◼ HW-enabled design archives best energy consumption for CRC32

◼ However, it limits performance for sram_memcpy because of 16bit width memory I/F and AES128 because of SLM resource limitation
and long critical paths.

◼ Software-only design for AES128 still outperforms the other two commercial micro-controllers (ESP32 and Raspberry Pi Pico)

Conclusion

12

◼ We proposed SLMLET, an SoC with a RISC-V core and eFPGA featuring SLM
reconfigurable logic

◼ We also developed HW/SW co-design flow and software library for SLMLET

◼ Experimental results show

◼ In benchmarks like CRC32, where the benefits of hardware implementation are

significant, both latency reduction and energy savings are archived

◼ RISC-V core outperforms commercially available micro-controllers

◼ Future works

◼ Removing the performance bottlenecks and fully harnessing the capability of SLM

blocks for more applications

◼ Updating the design flow and library to support multi-SLMLET platform interconnected

via HyperBus

	Slide 1: SLMLET: A RISC-V Processor SoC with Tightly-Coupled Area-Efficient eFPGA Blocks
	Slide 2: Paradigm Shift Towards Edge Computing
	Slide 3: SLMLET: Our Proposed FPGA-CPU Hybrid SoC
	Slide 4: eFPGA Blocks based on SLM
	Slide 5: SLM Block and Peripheral Modules
	Slide 6: Prototype Implementation of SLMLET
	Slide 7: Our HW/SW development flow
	Slide 8: 　Code example to use SLM Block
	Slide 9: Test & Evaluation Environment
	Slide 10: Evaluation benchmarks
	Slide 11: Power and energy consumption comparison
	Slide 12: Conclusion

