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Paradigm Shift Towards Edge Computing
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◼ Limited scalability of the conventional centralized cloud computing

◼ Increases transferred data 

◼ Brings heavy computational loads

◼ Increases processing latency

◼ Edge Computing

◼Offloads some processing

to endpoint devices instead of Cloud server

◼ Emerging Demands for devices

◼High throughput

◼ Low latency

◼ Low energy Consumption

Cloud, Data center

Ever-growing

IoT devices Latency

increases



SLMLET: Our Proposed FPGA-CPU Hybrid SoC 

◼ CPU: RISC-V RV32I
◼ Based on risc-v mini by UC Berkeley

◼ Responsible for system control

◼ Dedicated Inst./Data Mem. (Each 64KB)

◼ SLM (Scalable Logic Module)
◼ Embedded FPGA Blocks

◼ HyperBus Interface
◼ Compliant with JEDEC xSPI

◼ 2 banks of on-chip shared mem.
◼ 128KB/bank

◼ SPI master interface
◼ Boot loading & peripherals

◼ Up to 4 channels
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SLMLET SoCの構成



eFPGA Blocks based on SLM
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◼ Scalable Logic Module(SLM)

◼Memory-saving logic cell Based on Shannon 

Expansion and NPN Equivalent Functions

◼ K-input logic function realized with (K-1)-LUT & 

programmable NANDs (PNs)

◼ eFPGA IP Generator [1]

◼Allows customization of SLM input size, number of logic cells, etc.

◼Wilton-type Interconnection network
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SLM Cell Structure for K-input logic

SLM Structure SLM cells / LB # of LB Total  SLMs DSP block Total FFs

5-SLM 4 BLE (SLM) 224 896 8 1024 bit

[1] Kuga, Morihiro, et al. "An eFPGA Generation Suite with Customizable Architecture and IDE." IEICE Transactions on Fundamentals of Electronics, 

Communications and Computer Sciences 106.3 (2023): 560-574.

IP parameters employed for SLMLET



SLM Block and Peripheral Modules
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◼ Configuration Controller

◼ Writing a Bitstream to the SLM Block

◼ Parallel Reconfigurable available

◼ Interconnect between shared SRAM
◼ Enables each module exclusive access

◼ Three difference data I/O of SLM Block

1. Direct access by RISC-V core (CSR) 8bit width 

2. SRAM read/write 16bit data + 8bit address

3. 32bit stream to/from DMAC

◼Enables the external DRAM via HyperBus I/F
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Prototype Implementation of SLMLET

◼ Fabricated with USJC DDC 55nm
◼ Small threshold voltage variation

◼ 240mV/V of a high body effect coefficient

◼Exciting leakage reduction by body bias control

◼ Employed Library

◼ C55DDCT07L60LVT
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Chip photo of SLMLET Transistor Structure of DDC Process



Our HW/SW development flow
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unsigned int* bitstream;

bitstram = loadBitstream(0, MEM_BANK0);

configurationSLMAsync(SLM_BLOCK0, 

bitstream);

synchronizeConfigurationSLM(SLM_BLOCK0);

resetSLM(SLM_BLOCK0);

startSLM(SLM_BLOCK0);

Code Snippet for FPGA Configuration

Object

Files

SW Part Compiler Flow

Executable

Header

added

Bitstreams

C
o

m
p

re
ss



Code example to use SLM Block
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STEP 1: loading configuration data into shared memory

STEP2 :Writing configuration data to SLM (Reconfiguration)

STEP 3: reset & enable signal to SLM Block

STEP 4: Access to memory mapped 

registers on SLM 

Our developed library 

offers useful APIs



Test & Evaluation Environment
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◼ PySLMLET
◼ PYNQ-Z2 board works as SLMLET host

◼ Developed Python driver to control HW on PYNQ-Z2 board

◼ PySLMLET-TUI for test automation
◼ Text-based UI for testing with variable conditions (running software binaries, voltage, 

operational frequency, etc.) 

SLMLET docked at PYNQ-Z2

Fully automated test and evaluation
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Evaluation benchmarks
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◼ Used three applications

1. sram_memcpy

◼Copies 16 KB data block on the shared SRAM

2. CRC32

◼Computes  CRC32 value for the given 1KB of binary data (polynomial 0x04C11DB7)

3. AES128

◼Encrypts one block of 128-bit plain texts 

◼ SLM block part is designed with RTL implementation

◼ Software-only cases uses MiBench source codes



Power and energy consumption comparison
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◼ HW-enabled design archives best energy consumption for CRC32

◼ However, it limits performance for sram_memcpy because of 16bit width memory I/F and AES128 because of SLM resource limitation 
and long critical paths.

◼ Software-only design for AES128 still outperforms the other two commercial micro-controllers (ESP32 and Raspberry Pi Pico)



Conclusion
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◼ We proposed SLMLET, an SoC with a RISC-V core and eFPGA featuring SLM 
reconfigurable logic

◼ We also developed HW/SW co-design flow and software library for SLMLET

◼ Experimental results show

◼ In benchmarks like CRC32, where the benefits of hardware implementation are 

significant, both latency reduction and energy savings are archived 

◼ RISC-V core outperforms commercially available micro-controllers

◼ Future works

◼ Removing the performance bottlenecks and fully harnessing the capability of SLM 

blocks for more applications

◼ Updating the design flow and library to support multi-SLMLET platform interconnected 

via HyperBus
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