SLMLET: A RISC-V Processor SoC wit

Tightly-Coupled Area-Efficient eFPGA Ble

Takuya Kojima', Yosuke Yanai? , Hayate Okuhara?
Hideharu Amano?, Morihiro Kuga*, Masahiro lida*

"The University of Tokyo, 2Keio University,
3National University of Singapore, *Kumamoto University

Paradigm Shift Towards Edge Computing

W Limited scalability of the conventional centralized cloud computing
M [ncreases transferred data

Cloud, Data center

B Brings heavy computational loads
B Increases processing latency
W Edge Computing |
Ever-growing

B Offloads some processing loT devices Latency
to endpoint devices instead of Cloud server _ increases

B Emerging Demands for devices

B High throughput TmT
B Low latency D
B L ow energy Consumption

SLMLET: Our Proposed FPGA-CPU Hybrid SoC

m CPU: RISC-V RV32I

B Based on risc-v mini by UC Berkeley E Shared
B Responsible for system control v r2akB x 2bank | | HperBus | DAV
B Dedicated Inst./Data Mem. (Each 64KB) 21— o E:ﬂ)\fks) Merfwry ! ?ﬁ%er?s)us o
W SLM (Scalable Logic Module) — comection |1 ouac
B Embedded FPGA Blocks ! : g
RISC-V o
B HyperBus Interface Core —[.5
T Tx/Rx :r’
B Compliant with JEDEC xSPI —— = l P
M 2 banks of on-chip shared mem. Meay || ey | o0t -
L] 1 28KB/bank 1 Controller
B SPI master interface
B Boot loading & peripherals SLMLET SoCOD##h

B Up to 4 channels

eFPGA Blocks based on SLM

m Scalable Logic Module(SLM) 2 o
B Memory-saving logic cell Based on Shannon Cals } ==
Expansion and NPN Equivalent Functions 2 (’EJ% PN out
B K-input logic function realized with (K-1)-LUT & h '
programmable NANDs (PNs) I Elb't.
W eFPGA IP Generator [1] SLM Cell Structure for K-input logic

B Allows customization of SLM input size, number of logic cells, etc.

B Wilton-type Interconnection network
IP parameters employed for SLMLET

SLM Structure | SLM cells / LB Total SLMs DSP block Total FFs

5-SLM 4 BLE (SLM) 1024 bit

[1] Kuga, Morihiro, et al. "An eFPGA Generation Suite with Customizable Architecture and IDE." IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 106.3 (2023): 560-574.

SLM Block and Peripheral Modules

B Configuration Controller Confia

B Writing a Bitstream to the SLM Block " Ctrl D :

B Parallel Reconfigurable available _ > 1 :
B Interconnect between shared SRAM > | |2 ‘'

B Enables each module exclusive access % (é " 4.0_.,.0 %
B Three difference data 1/O of SLM Block : [§ M Block ey f

1. Direct access by RISC-V core (CSR) 8bit width % % 8

2. SRAM read/write 16bit data + 8bit address 2 > 32$

3. 32bit stream to/from DMAC +

Enables the external DRAM via HyperBus I/F DMAC |&> LC;/F)F;‘;&S

Prototype Implementation of SLMLET

M Fabricated with USJC DDC 55nm

it B Small threshold voltage variation
F

e
L b A RN

H 240mV/V of a high body effect coefficient
Exciting leakage reduction by body bias control

® Employed Library
B C55DDCTO7L60LVT

Low doped layer

HETE AR

VN
Block 2
S D

T et (B TR RN GO W ORI AN NN Vr setting layer J P ” \
-we

({13 SERE

P

<

)

% Sy

. =9

lidoded e adads e ox® Ldads adsd i | - ol Ll = - :':|

o T X7l BUZY, 2 g T, e 3 Rt Rllfa)~

-ﬁifﬁ‘Ml«M—' & is‘«x4.‘. 2N b e e G R [
; Aotak j | SN RS w

Chip photo of SLMLET Transistor Structure of DDC Process

Our HW/SW development flow

\
SW Part Compiler Flow =gl [custom
° Library Linker
unsigned int* bitstream; SCFIpt
bit am = loadBitstream (0, MEM BANKO) ;
configurationSLMAsync (SLM_BLOCKO 0 EXGCUtab|e
bitstream) ; .
synchronizeConfigurationSLM (SLM BLOCKO) ; ObJeCt E_F
resetSLM (SLM _BLOCKO) ; Files :
startSLM (SLM_BLOCKO) ; Binary
Code Snippet for FPGA Configuration E
//EL > e T 4 E_l +
° 86‘ o & o 25 §
RTL YD ERI Y EY FPGA = FPGA
| | | Designs S ‘2‘5 < S & 2 F® Bitstream o) Object
i 2 oo my | Files 2 File
)
I
HW Part Design Flow with FPGA CAD L)

Code example to use SLM Block

STEP 1: loading configuration data into shared memory Our developed |ib|-ary

printf("“load bitstream\n");

unsigned int* bitstream = loadBitstream(0, USE_SRAM_BANK): offers useful APIs

(!'bitstream) {
printf("failed to load bitstream\n");
1.

' STEP2 ’:Writing configuration data to SLM (Reconfiguration)

printf("start configuration\n");
configurationSLMAsync(SLM_BLOCKO, bitstream);

1
2
3
4
5
6
7
8
9

synchronizeConfigurationSLM(SLM_BLOCK®),

intf("enable SLM\n"); . .
B e STEP 3: reset & enable signal to SLM Block
startSLM(USE_SLM_BLOCK);

printf("write data to SLM\n"); .
(i=0; i< FPGA_REG_COUNT; i++) { STEP 4: Access to memory mapped

writeSLM(USE_SLM_BLOCK, (int*)(4 * i), &write_data[i]); registers on SLM
}

printf("read data from SLM:\n");
23 (1L =0; 1 < FPGA_REG_COUNT; i++) {
24 printf("FPGA Reg %d: %08X\n", i1, readSLM(USE_SLM_BLOCK, (int*)(4 * i1)));
25 }

Test & Evaluation Environment

PYNQ-Z2 Board Linux PC
4)
nynq SoC \ v) TUL App.
(PSIARM) [pysmiLer pal L o e et Q
SLMLET
S e L Server]< > [Pycnent] Change
= zapmeeits B (EEEEEEEEEEE) T Test Condy
ety LS I?LFF’GA) Controner] |S||§2ALdEr <:'
SLMLET docked at PYNQ-Z2 Q ar Programmable Power Supply
® PySLMLET Fully automated test and evaluation

B PYNQ-Z2 board works as SLMLET host
B Developed Python driver to control HW on PYNQ-Z2 board

B PySLMLET-TUI for test automation

B Text-based Ul for testing with variable conditions (running software binaries, voltage,
operational frequency, etc.)

Evaluation benchmarks

W Used three applications

1. sram_memcpy
Copies 16 KB data block on the shared SRAM

2. CRC32
Computes CRC32 value for the given 1KB of binary data (polynomial 0x04C11DB7)

3. AES128
Encrypts one block of 128-bit plain texts

W SLM block part is designed with RTL implementation
W Software-only cases uses MiBench source codes

10

Power and energy consumption comparison

W SLMLET (SW) MSLMLET MmESP32 © Raspberry Pi Pico 9 A SLMLET(soft) % RP2040
SLMLET m GWINR-9
3 SN2 350 - About70us 4 Esp32
A%G) US B g
- - 5\1 g §l 25 E 300 &
q'l‘) g . § § 5 é 250 L\-
o2 2 < 3 § g’l g-200
£ — S . I3 3
o — o8 N S5 SN S
cS 1.5 o " oo QSN 3 150
3 - . 5
> = © S 9 2 100
o 1 @ 0 g
v O < ~ 50 A
c)
Ll 0.5 M :
102 T £
0 Log-scaled Latency (us)
sram_memcpy CRC32 AES128 Power consumption for each frequency

Energy consumption at peak performance

B HW-enabled design archives best energy consumption for CRC32
® However, it limits performance for sram_memcpy because of 16bit width memory I/F and AES128 because of SLM resource limitation

and long critical paths.
m Software-only design for AES128 still outperforms the other two commercial micro-controllers (ESP32 and Raspberry Pi Pico)

11

Conclusion

W We proposed S
reconfigurable

W We also develo

_LMLET, an SoC with a RISC-V core and eFPGA featuring SLM
ogic

ned HW/SW co-design flow and software library for SLMLET

B Experimental results show

B |In benchmarks

like CRC32, where the benefits of hardware implementation are

significant, both latency reduction and energy savings are archived
B RISC-V core outperforms commercially available micro-controllers

W Future works

B Removing the performance bottlenecks and fully harnessing the capability of SLM
blocks for more applications

B Updating the design flow and library to support multi-SLMLET platform interconnected

via HyperBus

12

	Slide 1: SLMLET: A RISC-V Processor SoC with Tightly-Coupled Area-Efficient eFPGA Blocks
	Slide 2: Paradigm Shift Towards Edge Computing
	Slide 3: SLMLET: Our Proposed FPGA-CPU Hybrid SoC
	Slide 4: eFPGA Blocks based on SLM
	Slide 5: SLM Block and Peripheral Modules
	Slide 6: Prototype Implementation of SLMLET
	Slide 7: Our HW/SW development flow
	Slide 8: 　Code example to use SLM Block
	Slide 9: Test & Evaluation Environment
	Slide 10: Evaluation benchmarks
	Slide 11: Power and energy consumption comparison
	Slide 12: Conclusion

